These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 37356539)
1. Auditory cortical responses to abrupt lateralization shifts do not reflect the activity of hemifield-specific units involved in opponent coding of auditory space. İlhan B; Kurt S; Ungan P Neuropsychologia; 2023 Sep; 188():108629. PubMed ID: 37356539 [TBL] [Abstract][Full Text] [Related]
2. Infant Cortical Auditory Evoked Potentials to Lateralized Noise Shifts Produced by Changes in Interaural Time Difference. Small SA; Ishida IM; Stapells DR Ear Hear; 2017; 38(1):94-102. PubMed ID: 27505221 [TBL] [Abstract][Full Text] [Related]
3. Evidence for opponent-channel coding of interaural time differences in human auditory cortex. Magezi DA; Krumbholz K J Neurophysiol; 2010 Oct; 104(4):1997-2007. PubMed ID: 20702739 [TBL] [Abstract][Full Text] [Related]
4. Electrophysiological responses to lateral shifts are not consistent with opponent-channel processing of interaural level differences. Ozmeral EJ; Eddins DA; Eddins AC J Neurophysiol; 2019 Aug; 122(2):737-748. PubMed ID: 31242052 [TBL] [Abstract][Full Text] [Related]
5. Reduced temporal processing in older, normal-hearing listeners evident from electrophysiological responses to shifts in interaural time difference. Ozmeral EJ; Eddins DA; Eddins AC J Neurophysiol; 2016 Dec; 116(6):2720-2729. PubMed ID: 27683889 [TBL] [Abstract][Full Text] [Related]
6. Trading of dynamic interaural time and level difference cues and its effect on the auditory motion-onset response measured with electroencephalography. Altmann CF; Ueda R; Bucher B; Furukawa S; Ono K; Kashino M; Mima T; Fukuyama H Neuroimage; 2017 Oct; 159():185-194. PubMed ID: 28756239 [TBL] [Abstract][Full Text] [Related]
7. Human auditory cortical mechanisms of sound lateralization: II. Interaural time differences at sound onset. McEvoy L; Hari R; Imada T; Sams M Hear Res; 1993 May; 67(1-2):98-109. PubMed ID: 8340283 [TBL] [Abstract][Full Text] [Related]
8. Differences in evoked potentials during the active processing of sound location and motion. Richter N; Schröger E; Rübsamen R Neuropsychologia; 2013 Jun; 51(7):1204-14. PubMed ID: 23499852 [TBL] [Abstract][Full Text] [Related]
9. A population rate code of auditory space in the human cortex. Salminen NH; May PJ; Alku P; Tiitinen H PLoS One; 2009 Oct; 4(10):e7600. PubMed ID: 19855836 [TBL] [Abstract][Full Text] [Related]
10. Neuronal sensitivity to interaural time differences in the sound envelope in the auditory cortex of the pallid bat. Lohuis TD; Fuzessery ZM Hear Res; 2000 May; 143(1-2):43-57. PubMed ID: 10771183 [TBL] [Abstract][Full Text] [Related]
11. [Responses of neurons in the primary auditory cortex of the cat to the auditory motion stimuli with variable interaural delay]. Nikitin NI; Varfolomeev AL; Kotelenko LM Ross Fiziol Zh Im I M Sechenova; 2003 Jun; 89(6):625-38. PubMed ID: 12966703 [TBL] [Abstract][Full Text] [Related]
12. Are interaural time and level differences represented by independent or integrated codes in the human auditory cortex? Edmonds BA; Krumbholz K J Assoc Res Otolaryngol; 2014 Feb; 15(1):103-14. PubMed ID: 24218332 [TBL] [Abstract][Full Text] [Related]
13. Event-related potentials to single-cycle binaural beats of a pure tone, a click train, and a noise. Ungan P; Yagcioglu S; Ayik E Exp Brain Res; 2019 Nov; 237(11):2811-2828. PubMed ID: 31451833 [TBL] [Abstract][Full Text] [Related]
14. Cortical Representation of Interaural Time Difference Is Impaired by Deafness in Development: Evidence from Children with Early Long-term Access to Sound through Bilateral Cochlear Implants Provided Simultaneously. Easwar V; Yamazaki H; Deighton M; Papsin B; Gordon K J Neurosci; 2017 Mar; 37(9):2349-2361. PubMed ID: 28123078 [TBL] [Abstract][Full Text] [Related]
15. [Topography of the Event-Related Brain Responses during Discrimination of Auditory Motion in Humans]. Shestopalova LB; Petropavlovskaia EA; Vaitulevich SP; Nikitin NI Zh Vyssh Nerv Deiat Im I P Pavlova; 2015; 65(5):577-96. PubMed ID: 26860001 [TBL] [Abstract][Full Text] [Related]
16. Integrated processing of spatial cues in human auditory cortex. Salminen NH; Takanen M; Santala O; Lamminsalo J; Altoè A; Pulkki V Hear Res; 2015 Sep; 327():143-52. PubMed ID: 26074304 [TBL] [Abstract][Full Text] [Related]
18. The opponent channel population code of sound location is an efficient representation of natural binaural sounds. Młynarski W PLoS Comput Biol; 2015 May; 11(5):e1004294. PubMed ID: 25996373 [TBL] [Abstract][Full Text] [Related]
20. Coding of interaural time differences of transients in auditory cortex of Rattus norvegicus: implications for the evolution of mammalian sound localization. Kelly JB; Phillips DP Hear Res; 1991 Sep; 55(1):39-44. PubMed ID: 1752792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]