These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 37356902)
1. EvoRator2: Predicting Site-specific Amino Acid Substitutions Based on Protein Structural Information Using Deep Learning. Nagar N; Tubiana J; Loewenthal G; Wolfson HJ; Ben Tal N; Pupko T J Mol Biol; 2023 Jul; 435(14):168155. PubMed ID: 37356902 [TBL] [Abstract][Full Text] [Related]
2. EvoRator: Prediction of Residue-level Evolutionary Rates from Protein Structures Using Machine Learning. Nagar N; Ben Tal N; Pupko T J Mol Biol; 2022 Jun; 434(11):167538. PubMed ID: 35662466 [TBL] [Abstract][Full Text] [Related]
3. Flattening the curve-How to get better results with small deep-mutational-scanning datasets. Wirnsberger G; Pritišanac I; Oberdorfer G; Gruber K Proteins; 2024 Jul; 92(7):886-902. PubMed ID: 38501649 [TBL] [Abstract][Full Text] [Related]
4. rawMSA: End-to-end Deep Learning using raw Multiple Sequence Alignments. Mirabello C; Wallner B PLoS One; 2019; 14(8):e0220182. PubMed ID: 31415569 [TBL] [Abstract][Full Text] [Related]
5. A Web-Based Protocol for Interprotein Contact Prediction by Deep Learning. Jing X; Zeng H; Wang S; Xu J Methods Mol Biol; 2020; 2074():67-80. PubMed ID: 31583631 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive Study on Enhancing Low-Quality Position-Specific Scoring Matrix with Deep Learning for Accurate Protein Structure Property Prediction: Using Bagging Multiple Sequence Alignment Learning. Guo Y; Wu J; Ma H; Wang S; Huang J J Comput Biol; 2021 Apr; 28(4):346-361. PubMed ID: 33617347 [No Abstract] [Full Text] [Related]
7. Deep-learning contact-map guided protein structure prediction in CASP13. Zheng W; Li Y; Zhang C; Pearce R; Mortuza SM; Zhang Y Proteins; 2019 Dec; 87(12):1149-1164. PubMed ID: 31365149 [TBL] [Abstract][Full Text] [Related]
8. PaleAle 5.0: prediction of protein relative solvent accessibility by deep learning. Kaleel M; Torrisi M; Mooney C; Pollastri G Amino Acids; 2019 Sep; 51(9):1289-1296. PubMed ID: 31388850 [TBL] [Abstract][Full Text] [Related]
9. ComplexContact: a web server for inter-protein contact prediction using deep learning. Zeng H; Wang S; Zhou T; Zhao F; Li X; Wu Q; Xu J Nucleic Acids Res; 2018 Jul; 46(W1):W432-W437. PubMed ID: 29790960 [TBL] [Abstract][Full Text] [Related]
10. Embeddings from protein language models predict conservation and variant effects. Marquet C; Heinzinger M; Olenyi T; Dallago C; Erckert K; Bernhofer M; Nechaev D; Rost B Hum Genet; 2022 Oct; 141(10):1629-1647. PubMed ID: 34967936 [TBL] [Abstract][Full Text] [Related]
11. The visualCMAT: A web-server to select and interpret correlated mutations/co-evolving residues in protein families. Suplatov D; Sharapova Y; Timonina D; Kopylov K; Švedas V J Bioinform Comput Biol; 2018 Apr; 16(2):1840005. PubMed ID: 29361894 [TBL] [Abstract][Full Text] [Related]
12. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model. Wang S; Sun S; Li Z; Zhang R; Xu J PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090 [TBL] [Abstract][Full Text] [Related]
13. DeepBSRPred: deep learning-based binding site residue prediction for proteins. Nikam R; Yugandhar K; Gromiha MM Amino Acids; 2023 Oct; 55(10):1305-1316. PubMed ID: 36574037 [TBL] [Abstract][Full Text] [Related]
14. Unveiling the evolution of policies for enhancing protein structure predictions: A comprehensive analysis. Rahimzadeh F; Mohammad Khanli L; Salehpoor P; Golabi F; PourBahrami S Comput Biol Med; 2024 Sep; 179():108815. PubMed ID: 38986287 [TBL] [Abstract][Full Text] [Related]
15. Context-specific amino acid substitution matrices and their use in the detection of protein homologs. Goonesekere NC; Lee B Proteins; 2008 May; 71(2):910-9. PubMed ID: 18004781 [TBL] [Abstract][Full Text] [Related]
16. Improving deep learning protein monomer and complex structure prediction using DeepMSA2 with huge metagenomics data. Zheng W; Wuyun Q; Li Y; Zhang C; Freddolino PL; Zhang Y Nat Methods; 2024 Feb; 21(2):279-289. PubMed ID: 38167654 [TBL] [Abstract][Full Text] [Related]
17. Predicting subcellular location of protein with evolution information and sequence-based deep learning. Liao Z; Pan G; Sun C; Tang J BMC Bioinformatics; 2021 Oct; 22(Suppl 10):515. PubMed ID: 34686152 [TBL] [Abstract][Full Text] [Related]
18. DNCON2_Inter: predicting interchain contacts for homodimeric and homomultimeric protein complexes using multiple sequence alignments of monomers and deep learning. Quadir F; Roy RS; Halfmann R; Cheng J Sci Rep; 2021 Jun; 11(1):12295. PubMed ID: 34112907 [TBL] [Abstract][Full Text] [Related]
19. Improving protein-protein interaction prediction using evolutionary information from low-quality MSAs. Várnai C; Burkoff NS; Wild DL PLoS One; 2017; 12(2):e0169356. PubMed ID: 28166227 [TBL] [Abstract][Full Text] [Related]
20. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art. Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]