These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37357064)

  • 1. Rethinking the hippocampal cognitive map as a meta-learning computational module.
    Ambrogioni L; Ólafsdóttir HF
    Trends Cogn Sci; 2023 Aug; 27(8):702-712. PubMed ID: 37357064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforcement learning approaches to hippocampus-dependent flexible spatial navigation.
    Tessereau C; O'Dea R; Coombes S; Bast T
    Brain Neurosci Adv; 2021; 5():2398212820975634. PubMed ID: 33954259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hippocampal formation as a hierarchical generative model supporting generative replay and continual learning.
    Stoianov I; Maisto D; Pezzulo G
    Prog Neurobiol; 2022 Oct; 217():102329. PubMed ID: 35870678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A general model of hippocampal and dorsal striatal learning and decision making.
    Geerts JP; Chersi F; Stachenfeld KL; Burgess N
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31427-31437. PubMed ID: 33229541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time sensory-motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization.
    Cazin N; Scleidorovich P; Weitzenfeld A; Dominey PF
    Biol Cybern; 2020 Apr; 114(2):249-268. PubMed ID: 32095878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid learning of spatial representations for goal-directed navigation based on a novel model of hippocampal place fields.
    Alabi A; Vanderelst D; Minai AA
    Neural Netw; 2023 Apr; 161():116-128. PubMed ID: 36745937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning.
    Zhou X; Bai T; Gao Y; Han Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30939807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural learning rules for generating flexible predictions and computing the successor representation.
    Fang C; Aronov D; Abbott LF; Mackevicius EL
    Elife; 2023 Mar; 12():. PubMed ID: 36928104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning Structures: Predictive Representations, Replay, and Generalization.
    Momennejad I
    Curr Opin Behav Sci; 2020 Apr; 32():155-166. PubMed ID: 35419465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A robotic model of hippocampal reverse replay for reinforcement learning.
    Whelan MT; Jimenez-Rodriguez A; Prescott TJ; Vasilaki E
    Bioinspir Biomim; 2022 Dec; 18(1):. PubMed ID: 36327454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hippocampal spatio-predictive cognitive maps adaptively guide reward generalization.
    Garvert MM; Saanum T; Schulz E; Schuck NW; Doeller CF
    Nat Neurosci; 2023 Apr; 26(4):615-626. PubMed ID: 37012381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Hippocampal Replay in Memory and Planning.
    Ólafsdóttir HF; Bush D; Barry C
    Curr Biol; 2018 Jan; 28(1):R37-R50. PubMed ID: 29316421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bidirectional synaptic plasticity rapidly modifies hippocampal representations.
    Milstein AD; Li Y; Bittner KC; Grienberger C; Soltesz I; Magee JC; Romani S
    Elife; 2021 Dec; 10():. PubMed ID: 34882093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Memory and Space: Towards an Understanding of the Cognitive Map.
    Schiller D; Eichenbaum H; Buffalo EA; Davachi L; Foster DJ; Leutgeb S; Ranganath C
    J Neurosci; 2015 Oct; 35(41):13904-11. PubMed ID: 26468191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial cognition and neuro-mimetic navigation: a model of hippocampal place cell activity.
    Arleo A; Gerstner W
    Biol Cybern; 2000 Sep; 83(3):287-99. PubMed ID: 11007302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological Schemas of Memory Spaces.
    Babichev A; Dabaghian YA
    Front Comput Neurosci; 2018; 12():27. PubMed ID: 29740306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of Awake Hippocampal-Prefrontal Replay for Spatial Learning and Memory-Guided Decision Making.
    Shin JD; Tang W; Jadhav SP
    Neuron; 2019 Dec; 104(6):1110-1125.e7. PubMed ID: 31677957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ventral Midline Thalamus Is Necessary for Hippocampal Place Field Stability and Cell Firing Modulation.
    Cholvin T; Hok V; Giorgi L; Chaillan FA; Poucet B
    J Neurosci; 2018 Jan; 38(1):158-172. PubMed ID: 29133436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Brain-Inspired Model of Hippocampal Spatial Cognition Based on a Memory-Replay Mechanism.
    Xu R; Ruan X; Huang J
    Brain Sci; 2022 Sep; 12(9):. PubMed ID: 36138911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Learning Drives Rapid Goal Representation in Hippocampal Ripples without Place Field Accumulation or Goal-Oriented Theta Sequences.
    Pfeiffer BE
    J Neurosci; 2022 May; 42(19):3975-3988. PubMed ID: 35396328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.