These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 37357311)
1. Dysregulation of histone modifications in bone marrow mesenchymal stem cells during skeletal ageing: roles and therapeutic prospects. Li Y; Hu M; Xie J; Li S; Dai L Stem Cell Res Ther; 2023 Jun; 14(1):166. PubMed ID: 37357311 [TBL] [Abstract][Full Text] [Related]
2. Regulation of osteogenesis in bone marrow-derived mesenchymal stem cells via histone deacetylase 1 and 2 co-cultured with human gingival fibroblasts and periodontal ligament cells. Iwata T; Kaneda-Ikeda E; Takahashi K; Takeda K; Nagahara T; Kajiya M; Sasaki S; Ishida S; Yoshioka M; Matsuda S; Ouhara K; Fujita T; Kurihara H; Mizuno N J Periodontal Res; 2023 Feb; 58(1):83-96. PubMed ID: 36346011 [TBL] [Abstract][Full Text] [Related]
3. Cell-autonomous heparanase modulates self-renewal and migration in bone marrow-derived mesenchymal stem cells. Cheng CC; Lee YH; Lin SP; Huangfu WC; Liu IH J Biomed Sci; 2014 Mar; 21(1):21. PubMed ID: 24624965 [TBL] [Abstract][Full Text] [Related]
4. Matrix-bound Cyr61/CCN1 is required to retain the properties of the bone marrow mesenchymal stem cell niche but is depleted with aging. Marinkovic M; Dai Q; Gonzalez AO; Tran ON; Block TJ; Harris SE; Salmon AB; Yeh CK; Dean DD; Chen XD Matrix Biol; 2022 Aug; 111():108-132. PubMed ID: 35752272 [TBL] [Abstract][Full Text] [Related]
6. Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. Li Z; Liu C; Xie Z; Song P; Zhao RC; Guo L; Liu Z; Wu Y PLoS One; 2011; 6(6):e20526. PubMed ID: 21694780 [TBL] [Abstract][Full Text] [Related]
7. Methylation and PTEN activation in dental pulp mesenchymal stem cells promotes osteogenesis and reduces oncogenesis. Shen WC; Lai YC; Li LH; Liao K; Lai HC; Kao SY; Wang J; Chuong CM; Hung SC Nat Commun; 2019 May; 10(1):2226. PubMed ID: 31110221 [TBL] [Abstract][Full Text] [Related]
8. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells. Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235 [TBL] [Abstract][Full Text] [Related]
9. Dynamic and distinct histone modifications of osteogenic genes during osteogenic differentiation. Zhang YX; Sun HL; Liang H; Li K; Fan QM; Zhao QH J Biochem; 2015 Dec; 158(6):445-57. PubMed ID: 26078467 [TBL] [Abstract][Full Text] [Related]
10. Epigenetic Regulation of Osteogenic Differentiation of Mesenchymal Stem Cells. Fu G; Ren A; Qiu Y; Zhang Y Curr Stem Cell Res Ther; 2016; 11(3):235-46. PubMed ID: 26018226 [TBL] [Abstract][Full Text] [Related]
11. Reciprocal Effect of Environmental Stimuli to Regulate the Adipogenesis and Osteogenesis Fate Decision in Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs). Xu X; Zhao L; Terry PD; Chen J Cells; 2023 May; 12(10):. PubMed ID: 37408234 [TBL] [Abstract][Full Text] [Related]
12. Donor age effects on in vitro chondrogenic and osteogenic differentiation performance of equine bone marrow- and adipose tissue-derived mesenchymal stromal cells. Bagge J; Berg LC; Janes J; MacLeod JN BMC Vet Res; 2022 Nov; 18(1):388. PubMed ID: 36329434 [TBL] [Abstract][Full Text] [Related]
13. Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration. Sassoli C; Vallone L; Tani A; Chellini F; Nosi D; Zecchi-Orlandini S Cell Tissue Res; 2018 Jun; 372(3):549-570. PubMed ID: 29404727 [TBL] [Abstract][Full Text] [Related]
14. Epigenetic therapy targeting bone marrow mesenchymal stem cells for age-related bone diseases. Zhao Y; He J; Qiu T; Zhang H; Liao L; Su X Stem Cell Res Ther; 2022 May; 13(1):201. PubMed ID: 35578312 [TBL] [Abstract][Full Text] [Related]
15. Adult mesenchymal stem cell ageing interplays with depressed mitochondrial Ndufs6. Zhang Y; Guo L; Han S; Chen L; Li C; Zhang Z; Hong Y; Zhang X; Zhou X; Jiang D; Liang X; Qiu J; Zhang J; Li X; Zhong S; Liao C; Yan B; Tse HF; Lian Q Cell Death Dis; 2020 Dec; 11(12):1075. PubMed ID: 33323934 [TBL] [Abstract][Full Text] [Related]
16. Impact of Environmental and Epigenetic Changes on Mesenchymal Stem Cells during Aging. Smith N; Shirazi S; Cakouros D; Gronthos S Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047469 [TBL] [Abstract][Full Text] [Related]
17. Loss of KDM4B exacerbates bone-fat imbalance and mesenchymal stromal cell exhaustion in skeletal aging. Deng P; Yuan Q; Cheng Y; Li J; Liu Z; Liu Y; Li Y; Su T; Wang J; Salvo ME; Wang W; Fan G; Lyons K; Yu B; Wang CY Cell Stem Cell; 2021 Jun; 28(6):1057-1073.e7. PubMed ID: 33571444 [TBL] [Abstract][Full Text] [Related]
18. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue. Xu L; Liu Y; Sun Y; Wang B; Xiong Y; Lin W; Wei Q; Wang H; He W; Wang B; Li G Stem Cell Res Ther; 2017 Dec; 8(1):275. PubMed ID: 29208029 [TBL] [Abstract][Full Text] [Related]
19. SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells. Yoon DS; Choi Y; Jang Y; Lee M; Choi WJ; Kim SH; Lee JW Stem Cells; 2014 Dec; 32(12):3219-31. PubMed ID: 25132403 [TBL] [Abstract][Full Text] [Related]
20. FOXO3 is targeted by miR-223-3p and promotes osteogenic differentiation of bone marrow mesenchymal stem cells by enhancing autophagy. Long C; Cen S; Zhong Z; Zhou C; Zhong G Hum Cell; 2021 Jan; 34(1):14-27. PubMed ID: 32920731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]