BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37357335)

  • 1. Predictions of optimal heating by magnetic reversal behavior of magnetic nanowires (MNWs) with different materials.
    Chen Y; Stadler BJH
    Int J Hyperthermia; 2023; 40(1):2223371. PubMed ID: 37357335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Realizing the Principles for Remote and Selective Detection of Cancer Cells Using Magnetic Nanowires.
    Zamani Kouhpanji MR; Nemati Z; Modiano J; Franklin R; Stadler B
    J Phys Chem B; 2021 Jul; 125(28):7742-7749. PubMed ID: 34232647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Magnetic Nanoclusters for Highly Efficient Heating in Radio-Frequency Nanowarming.
    Ye Z; Tai Y; Han Z; Liu S; Etheridge ML; Pasek-Allen JL; Shastry C; Liu Y; Li Z; Chen C; Wang Z; Bischof JC; Nam J; Yin Y
    Nano Lett; 2024 Apr; 24(15):4588-4594. PubMed ID: 38587406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanowarming using Au-tipped Co
    Shore D; Ghemes A; Dragos-Pinzaru O; Gao Z; Shao Q; Sharma A; Um J; Tabakovic I; Bischof JC; Stadler BJH
    Nanoscale; 2019 Aug; 11(31):14607-14615. PubMed ID: 31287480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Detection of Cancer Cells Using Magnetic Nanowires.
    Zamani Kouhpanji MR; Nemati Z; Mahmoodi MM; Um J; Modiano J; Franklin R; Stadler B
    ACS Appl Mater Interfaces; 2021 May; 13(18):21060-21066. PubMed ID: 33904709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioapplications of Magnetic Nanowires: Barcodes, Biocomposites, Heaters.
    Kouhpanji MRZ; Zhang Y; Um J; Srinivasan K; Sharma A; Shore D; Gao Z; Chen Y; Harpel A; Porshokouh ZN; Gage TE; Dragos-Pinzaru O; Tabakovic I; Visscher PB; Bischof J; Modiano JF; Franklin R; Stadler BJH
    IEEE Trans Magn; 2022 Aug; 58(8):. PubMed ID: 36864851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.
    Caizer C
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines.
    Demirci Dönmez ÇE; Manna PK; Nickel R; Aktürk S; van Lierop J
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6858-6866. PubMed ID: 30676734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic stent hyperthermia for esophageal cancer: an in vitro investigation in the ECA-109 cell line.
    Liu JY; Zhao LY; Wang YY; Li DY; Tao D; Li LY; Tang JT
    Oncol Rep; 2012 Mar; 27(3):791-7. PubMed ID: 22200741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Evaluation on the Heating Efficiency of Magnetoferritin Nanoparticles in an Alternating Magnetic Field.
    Xu H; Pan Y
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31615049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia.
    Khandhar AP; Ferguson RM; Simon JA; Krishnan KM
    J Biomed Mater Res A; 2012 Mar; 100(3):728-37. PubMed ID: 22213652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperthermia with magnetic nanowires for inactivating living cells.
    Choi DS; Park J; Kim S; Gracias DH; Cho MK; Kim YK; Fung A; Lee SE; Chen Y; Khanal S; Baral S; Kim JH
    J Nanosci Nanotechnol; 2008 May; 8(5):2323-7. PubMed ID: 18572644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The heating efficiency of magnetic nanoparticles under an alternating magnetic field.
    Yu X; Yang R; Wu C; Liu B; Zhang W
    Sci Rep; 2022 Sep; 12(1):16055. PubMed ID: 36163493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: a theoretical feasibility analysis.
    Piao D; Towner RA; Smith N; Chen WR
    Med Phys; 2013 Jun; 40(6):063301. PubMed ID: 23718611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic Nanowires for Nanobarcoding and Beyond.
    Zamani Kouhpanji MR; Stadler BJH
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer.
    Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL
    Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells.
    Nowicka AM; Ruzycka-Ayoush M; Kasprzak A; Kowalczyk A; Bamburowicz-Klimkowska M; Sikorska M; Sobczak K; Donten M; Ruszczynska A; Nowakowska J; Grudzinski IP
    J Mater Chem B; 2023 May; 11(18):4028-4041. PubMed ID: 36960952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micromagnetic Simulations of Fe and Ni Nanodot Arrays Surrounded by Magnetic or Non-Magnetic Matrices.
    Sudsom D; Ehrmann A
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33535405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles.
    Soetaert F; Kandala SK; Bakuzis A; Ivkov R
    Sci Rep; 2017 Jul; 7(1):6661. PubMed ID: 28751720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles.
    Shaterabadi Z; Nabiyouni G; Soleymani M
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111274. PubMed ID: 32919638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.