BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 37357681)

  • 1. Neurocognitive assessment in microgravity: review of tools and benefits of increasing their clinical validity for long duration missions.
    De la Torre GG; Gonzalez-Torre S
    J Clin Exp Neuropsychol; 2023 May; 45(3):270-291. PubMed ID: 37357681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent developments in space food for exploration missions: A review.
    Pandith JA; Neekhra S; Ahmad S; Sheikh RA
    Life Sci Space Res (Amst); 2023 Feb; 36():123-134. PubMed ID: 36682821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data.
    Convertino VA
    J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spaceflight validation of technology for point-of-care monitoring of peripheral blood WBC and differential in astronauts during space missions.
    Crucian B; Valentine R; Calaway K; Miller R; Rubins K; Hopkins M; Salas Z; Krieger S; Makedonas G; Nelman-Gonzalez M; McMonigal K; Perusek G; Lehnhardt K; Easter B
    Life Sci Space Res (Amst); 2021 Nov; 31():29-33. PubMed ID: 34689947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contemporary review of dermatologic conditions in space flight and future implications for long-duration exploration missions.
    Nguyen CN; Urquieta E
    Life Sci Space Res (Amst); 2023 Feb; 36():147-156. PubMed ID: 36682824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manned interplanetary missions: prospective medical problems.
    Grigoriev AI; Svetaylo EN; Egorov AD
    Environ Med; 1998 Dec; 42(2):83-94. PubMed ID: 11542693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuro-consequences of the spaceflight environment.
    Mhatre SD; Iyer J; Puukila S; Paul AM; Tahimic CGT; Rubinstein L; Lowe M; Alwood JS; Sowa MB; Bhattacharya S; Globus RK; Ronca AE
    Neurosci Biobehav Rev; 2022 Jan; 132():908-935. PubMed ID: 34767877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HUMEX, a study on the survivability and adaptation of humans to long-duration exploratory missions, part I: lunar missions.
    Horneck G; Facius R; Reichert M; Rettberg P; Seboldt W; Manzey D; Comet B; Maillet A; Preiss H; Schauer L; Dussap CG; Poughon L; Belyavin A; Reitz G; Baumstark-Khan C; Gerzer R
    Adv Space Res; 2003; 31(11):2389-401. PubMed ID: 14696589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A non-invasive approach to monitor anemia during long-duration spaceflight with retinal fundus images and deep learning.
    Waisberg E; Ong J; Zaman N; Kamran SA; Lee AG; Tavakkoli A
    Life Sci Space Res (Amst); 2022 May; 33():69-71. PubMed ID: 35491031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of spaceflight and microgravity on the human brain.
    Van Ombergen A; Demertzi A; Tomilovskaya E; Jeurissen B; Sijbers J; Kozlovskaya IB; Parizel PM; Van de Heyning PH; Sunaert S; Laureys S; Wuyts FL
    J Neurol; 2017 Oct; 264(Suppl 1):18-22. PubMed ID: 28271409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mice display learning and behavioral deficits after a 30-day spaceflight on Bion-M1 satellite.
    Andreev-Andrievskiy A; Dolgov O; Alberts J; Popova A; Lagereva E; Anokhin K; Vinogradova O
    Behav Brain Res; 2022 Feb; 419():113682. PubMed ID: 34843743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges to the central nervous system during human spaceflight missions to Mars.
    Clément GR; Boyle RD; George KA; Nelson GA; Reschke MF; Williams TJ; Paloski WH
    J Neurophysiol; 2020 May; 123(5):2037-2063. PubMed ID: 32292116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How spaceflight challenges human cardiovascular health.
    Jirak P; Mirna M; Rezar R; Motloch LJ; Lichtenauer M; Jordan J; Binneboessel S; Tank J; Limper U; Jung C
    Eur J Prev Cardiol; 2022 Aug; 29(10):1399-1411. PubMed ID: 35148376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spaceflight induced changes in the human proteome.
    Kononikhin AS; Starodubtseva NL; Pastushkova LK; Kashirina DN; Fedorchenko KY; Brhozovsky AG; Popov IA; Larina IM; Nikolaev EN
    Expert Rev Proteomics; 2017 Jan; 14(1):15-29. PubMed ID: 27817217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human health and performance for long-duration spaceflight.
    Baisden DL; Beven GE; Campbell MR; Charles JB; Dervay JP; Foster E; Gray GW; Hamilton DR; Holland DA; Jennings RT; Johnston SL; Jones JA; Kerwin JP; Locke J; Polk JD; Scarpa PJ; Sipes W; Stepanek J; Webb JT; ;
    Aviat Space Environ Med; 2008 Jun; 79(6):629-35. PubMed ID: 18581950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuro-Ophthalmology of Space Flight.
    Lee AG; Tarver WJ; Mader TH; Gibson CR; Hart SF; Otto CA
    J Neuroophthalmol; 2016 Mar; 36(1):85-91. PubMed ID: 26828842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Spaceflight and Microgravity on the Musculoskeletal System: A Review.
    Lee Satcher R; Fiedler B; Ghali A; Dirschl DR
    J Am Acad Orthop Surg; 2024 Jun; 32(12):535-541. PubMed ID: 38652883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association of Long-Duration Spaceflight With Anterior and Posterior Ocular Structure Changes in Astronauts and Their Recovery.
    Macias BR; Patel NB; Gibson CR; Samuels BC; Laurie SS; Otto C; Ferguson CR; Lee SMC; Ploutz-Snyder R; Kramer LA; Mader TH; Brunstetter T; Stenger MB
    JAMA Ophthalmol; 2020 May; 138(5):553-559. PubMed ID: 32239198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The future of human spaceflight.
    Reichert M
    Acta Astronaut; 2001; 49(3-10):495-522. PubMed ID: 11669137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of muscle atrophy in microgravity and during prolonged bed rest.
    Droppert PM
    J Br Interplanet Soc; 1993 Mar; 46(3):83-6. PubMed ID: 11539498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.