BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37357686)

  • 21. Genetic or pharmacologic blockade of enhancer of zeste homolog 2 inhibits the progression of peritoneal fibrosis.
    Shi Y; Tao M; Wang Y; Zang X; Ma X; Qiu A; Zhuang S; Liu N
    J Pathol; 2020 Jan; 250(1):79-94. PubMed ID: 31579944
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MicroRNA-145 promotes the epithelial-mesenchymal transition in peritoneal dialysis-associated fibrosis by suppressing fibroblast growth factor 10.
    Wu J; Huang Q; Li P; Wang Y; Zheng C; Lei X; Li S; Gong W; Yin B; Luo C; Xiao J; Zhou W; Xu Z; Chen Y; Peng F; Long H
    J Biol Chem; 2019 Oct; 294(41):15052-15067. PubMed ID: 31431501
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fibronectin on the Surface of Extracellular Vesicles Mediates Fibroblast Invasion.
    Chanda D; Otoupalova E; Hough KP; Locy ML; Bernard K; Deshane JS; Sanderson RD; Mobley JA; Thannickal VJ
    Am J Respir Cell Mol Biol; 2019 Mar; 60(3):279-288. PubMed ID: 30321056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elevated expression of HDAC6 in clinical peritoneal dialysis patients and its pathogenic role on peritoneal angiogenesis.
    Shi Y; Ni J; Tao M; Ma X; Wang Y; Zang X; Hu Y; Qiu A; Zhuang S; Liu N
    Ren Fail; 2020 Nov; 42(1):890-901. PubMed ID: 32862739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acidic organelles mediate TGF-β1-induced cellular fibrosis via (pro)renin receptor and vacuolar ATPase trafficking in human peritoneal mesothelial cells.
    Oba-Yabana I; Mori T; Takahashi C; Hirose T; Ohsaki Y; Kinugasa S; Muroya Y; Sato E; Nguyen G; Piedagnel R; Ronco PM; Totsune K; Ito S
    Sci Rep; 2018 Feb; 8(1):2648. PubMed ID: 29422602
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Omega-3 polyunsaturated fatty acids protect peritoneal mesothelial cells from hyperglycolysis and mesothelial-mesenchymal transition through the FFAR4/CaMKKβ/AMPK/mTOR signaling pathway.
    Zhang J; Li H; Zhong H; Chen X; Hu ZX
    Int Immunopharmacol; 2024 Feb; 128():111561. PubMed ID: 38262160
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MiR-200a negatively regulates TGF-β
    Guo R; Hao G; Bao Y; Xiao J; Zhan X; Shi X; Luo L; Zhou J; Chen Q; Wei X
    Am J Physiol Renal Physiol; 2018 Jun; 314(6):F1087-F1095. PubMed ID: 29357421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mesenchymal conversion of mesothelial cells as a mechanism responsible for high solute transport rate in peritoneal dialysis: role of vascular endothelial growth factor.
    Aroeira LS; Aguilera A; Selgas R; Ramírez-Huesca M; Pérez-Lozano ML; Cirugeda A; Bajo MA; del Peso G; Sánchez-Tomero JA; Jiménez-Heffernan JA; López-Cabrera M
    Am J Kidney Dis; 2005 Nov; 46(5):938-48. PubMed ID: 16253736
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MicroRNA-21 contributes to high glucose-induced fibrosis in peritoneal mesothelial cells in rat models by activation of the Ras-MAPK signaling pathway via Sprouty-1.
    Gao Q; Xu L; Yang Q; Guan TJ
    J Cell Physiol; 2019 May; 234(5):5915-5925. PubMed ID: 30515805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tamoxifen exerts anti-peritoneal fibrosis effects by inhibiting H19-activated VEGFA transcription.
    Zhao T; Sun Z; Lai X; Lu H; Liu L; Li S; Yuan JH; Guo Z
    J Transl Med; 2023 Sep; 21(1):614. PubMed ID: 37697303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluid flow stress affects peritoneal cell kinetics: possible pathogenesis of peritoneal fibrosis.
    Aoki S; Makino J; Nagashima A; Takezawa T; Nomoto N; Uchihashi K; Matsunobu A; Sanai T; Sugihara H; Toda S
    Perit Dial Int; 2011; 31(4):466-76. PubMed ID: 21532005
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CX3CL1-CX3CR1 interaction mediates macrophage-mesothelial cross talk and promotes peritoneal fibrosis.
    Helmke A; Nordlohne J; Balzer MS; Dong L; Rong S; Hiss M; Shushakova N; Haller H; von Vietinghoff S
    Kidney Int; 2019 Jun; 95(6):1405-1417. PubMed ID: 30948201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pyrrole-imidazole polyamide targeting transforming growth factor β1 ameliorates encapsulating peritoneal sclerosis.
    Serie K; Fukuda N; Nakai S; Matsuda H; Maruyama T; Murayama Y; Omata S
    Perit Dial Int; 2012; 32(4):462-72. PubMed ID: 22215658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Network-based integrated analysis of omics data reveal novel players of TGF-β1-induced EMT in human peritoneal mesothelial cells.
    Han SM; Ryu HM; Suh J; Lee KJ; Choi SY; Choi S; Kim YL; Huh JY; Ha H
    Sci Rep; 2019 Feb; 9(1):1497. PubMed ID: 30728376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Blockade of thrombospondin-1 ameliorates high glucose-induced peritoneal fibrosis through downregulation of TGF-β1/Smad3 signaling pathway.
    Jiang N; Zhang Z; Shao X; Jing R; Wang C; Fang W; Mou S; Ni Z
    J Cell Physiol; 2020 Jan; 235(1):364-379. PubMed ID: 31236971
    [TBL] [Abstract][Full Text] [Related]  

  • 36. STAT3/HIF-1α signaling activation mediates peritoneal fibrosis induced by high glucose.
    Yang X; Bao M; Fang Y; Yu X; Ji J; Ding X
    J Transl Med; 2021 Jun; 19(1):283. PubMed ID: 34193173
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Therapeutic Potential of Human Umbilical Mesenchymal Stem Cells From Wharton's Jelly in the Treatment of Rat Peritoneal Dialysis-Induced Fibrosis.
    Fan YP; Hsia CC; Tseng KW; Liao CK; Fu TW; Ko TL; Chiu MM; Shih YH; Huang PY; Chiang YC; Yang CC; Fu YS
    Stem Cells Transl Med; 2016 Feb; 5(2):235-47. PubMed ID: 26718649
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Asiaticoside inhibits TGF-β1-induced mesothelial-mesenchymal transition and oxidative stress via the Nrf2/HO-1 signaling pathway in the human peritoneal mesothelial cell line HMrSV5.
    Zhao J; Shi J; Shan Y; Yu M; Zhu X; Zhu Y; Liu L; Sheng M
    Cell Mol Biol Lett; 2020; 25():33. PubMed ID: 32514269
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Parthenolide, an NF-κB inhibitor, alleviates peritoneal fibrosis by suppressing the TGF-β/Smad pathway.
    Zhang Y; Huang Q; Chen Y; Peng X; Wang Y; Li S; Wu J; Luo C; Gong W; Yin B; Xiao J; Zhou W; Peng F; Long H
    Int Immunopharmacol; 2020 Jan; 78():106064. PubMed ID: 31838448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The TGF-beta-induced gene product, betaig-h3: its biological implications in peritoneal dialysis.
    Park SH; Choi SY; Kim MH; Oh EJ; Ryu HM; Kim CD; Kim IS; Kim YL
    Nephrol Dial Transplant; 2008 Jan; 23(1):126-35. PubMed ID: 17704110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.