BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 37357818)

  • 21. Interface engineering of transition metal-nitrogen-carbon by graphdiyne for boosting the oxygen reduction/evolution reactions: A computational study.
    Yan T; Li X; Wang Z; Cai Q; Zhao J
    J Colloid Interface Sci; 2023 Nov; 649():1-9. PubMed ID: 37331105
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transition Metal and N Doping on AlP Monolayers for Bifunctional Oxygen Electrocatalysts: Density Functional Theory Study Assisted by Machine Learning Description.
    Liu X; Zhang Y; Wang W; Chen Y; Xiao W; Liu T; Zhong Z; Luo Z; Ding Z; Zhang Z
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1249-1259. PubMed ID: 34941239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical Study on ORR/OER Bifunctional Catalytic Activity of Axial Functionalized Iron Polyphthalocyanine.
    Wang G; Feng X; Ren R; Wang Y; Meng J; Jia J
    Molecules; 2023 Dec; 29(1):. PubMed ID: 38202793
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical study of Mo
    Lin L; Long X; Yang X; Shi P; Su L
    Phys Chem Chem Phys; 2023 Sep; 25(36):24721-24732. PubMed ID: 37670691
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Borophene-supported single transition metal atoms as potential oxygen evolution/reduction electrocatalysts: a density functional theory study.
    Xu X; Si R; Dong Y; Li L; Zhang M; Wu X; Zhang J; Fu K; Guo Y; He Y
    J Mol Model; 2021 Feb; 27(3):67. PubMed ID: 33537857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rational prediction of multifunctional bilayer single atom catalysts for the hydrogen evolution, oxygen evolution and oxygen reduction reactions.
    Hu R; Li Y; Wang F; Shang J
    Nanoscale; 2020 Oct; 12(39):20413-20424. PubMed ID: 33026034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bifunctional oxygen reduction/evolution reaction electrocatalysts achieved by axial ligand modulation on two-dimensional porphyrin frameworks.
    Xu T; Liu T; Jing Y
    Phys Chem Chem Phys; 2024 Jun; ():. PubMed ID: 38932574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly Active Bifunctional Electrocatalysts for Oxygen Evolution and Reduction in Zn-Air Batteries.
    Kim SW; Son Y; Choi K; Kim SI; Son Y; Park J; Lee JH; Jang JH
    ChemSusChem; 2018 Dec; 11(24):4203-4208. PubMed ID: 30381898
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Constructing highly efficient bifunctional catalysts for oxygen reduction and oxygen evolution by modifying MXene with transition metal.
    Dai Y; Zhao X; Zheng D; Zhao Q; Feng J; Feng Y; Ge X; Chen X
    J Colloid Interface Sci; 2024 Apr; 660():628-636. PubMed ID: 38266344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MOF-derived two-dimensional N-doped carbon nanosheets coupled with Co-Fe-P-Se as efficient bifunctional OER/ORR catalysts.
    Wu H; Wang J; Yan J; Wu Z; Jin W
    Nanoscale; 2019 Nov; 11(42):20144-20150. PubMed ID: 31613298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advanced Bifunctional Oxygen Reduction and Evolution Electrocatalyst Derived from Surface-Mounted Metal-Organic Frameworks.
    Li W; Xue S; Watzele S; Hou S; Fichtner J; Semrau AL; Zhou L; Welle A; Bandarenka AS; Fischer RA
    Angew Chem Int Ed Engl; 2020 Mar; 59(14):5837-5843. PubMed ID: 31912955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tunable active-sites of Co- nanoparticles encapsulated in carbon nanofiber as high performance bifunctional OER/ORR electrocatalyst.
    He H; Lei Y; Liu S; Thummavichai K; Zhu Y; Wang N
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):140-149. PubMed ID: 36240688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rational Design of Highly Stable and Active MXene-Based Bifunctional ORR/OER Double-Atom Catalysts.
    Wei B; Fu Z; Legut D; Germann TC; Du S; Zhang H; Francisco JS; Zhang R
    Adv Mater; 2021 Oct; 33(40):e2102595. PubMed ID: 34342921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-Dimensional Metal-Organic Frameworks as Ultrahigh-Performance Electrocatalysts for the Fuel Cell Cathode: A First-Principles Study.
    Chen X; Luo L; Ge F
    Langmuir; 2022 Apr; 38(16):4996-5005. PubMed ID: 35420824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical screening of VSe
    Wang Y; Wan J; Tian W; Hou Z; Gu X; Wang Y
    J Colloid Interface Sci; 2021 May; 590():210-218. PubMed ID: 33548604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transition metal-N
    Chen D; Chen Z; Lu Z; Zhang X; Tang J; Singh CV
    Nanoscale; 2020 Sep; 12(36):18721-18732. PubMed ID: 32896844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing ORR/OER active sites through lattice distortion of Fe-enriched FeNi
    Chen K; Kim S; Rajendiran R; Prabakar K; Li G; Shi Z; Jeong C; Kang J; Li OL
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):977-990. PubMed ID: 32927178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cobalt-Based Metal-Organic Framework Nanoarrays as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries.
    Chen G; Zhang J; Wang F; Wang L; Liao Z; Zschech E; Müllen K; Feng X
    Chemistry; 2018 Dec; 24(69):18413-18418. PubMed ID: 30192997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational screening of single-atom catalysts supported by VS
    Qin Z; Wang Z; Zhao J
    Nanoscale; 2022 May; 14(18):6902-6911. PubMed ID: 35446333
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxo transition metal anchored on C
    Li Y; Zhao X; Chen X
    Phys Chem Chem Phys; 2023 Aug; 25(30):20606-20617. PubMed ID: 37477574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.