These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37358019)

  • 1. What governs the electrocatalytic N
    Ji Y; Huang Y; Wang G; Liu P; Cai W
    Phys Chem Chem Phys; 2023 Jul; 25(26):17515-17525. PubMed ID: 37358019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition-metal-free boron doped SbN monolayer for N
    Chen D; Chen Z; Chen L; Li Y; Xiao S; Xiao B
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1551-1561. PubMed ID: 34587530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Design of Two-Dimensional Boron-Containing Compounds as Efficient Metal-free Electrocatalysts toward Nitrogen Reduction Independent of Heteroatom Doping.
    Nong W; Liang H; Qin S; Li Y; Wang C
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50505-50515. PubMed ID: 33136381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activating Graphyne Nanosheet via sp-Hybridized Boron Modulation for Electrochemical Nitrogen Fixation.
    Liu Q; Wang S; Chen G; Liu Q; Kong X
    Inorg Chem; 2019 Sep; 58(17):11843-11849. PubMed ID: 31436965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen Fixation at the Edges of Boron Nitride Nanomaterials: Synergy of Doping.
    Choutipalli VSK; Esackraj K; Subramanian V
    Front Chem; 2021; 9():799903. PubMed ID: 35127647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breaking the Volcano-Shaped Relationship for Highly Efficient Electrocatalytic Nitrogen Reduction: A Computational Guideline.
    Gao D; Yi D; Sun C; Yang Y; Wang X
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):52806-52814. PubMed ID: 36380594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single boron modulated graphdiyne nanosheets for efficient electrochemical nitrogen fixation: a first-principles study.
    Fu C; Li Y; Wei H
    Phys Chem Chem Phys; 2022 Aug; 24(33):19817-19826. PubMed ID: 35946393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of N
    Yang H; Luo D; Gao R; Wang D; Li H; Zhao Z; Feng M; Chen Z
    Phys Chem Chem Phys; 2021 Aug; 23(31):16707-16717. PubMed ID: 34037001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is Fe the Most Active Site for Fe/N-Doped Graphdiyne?
    Feng Y; Sun M; Ji Y; Fan T
    ACS Omega; 2024 Apr; 9(15):17389-17397. PubMed ID: 38645330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unleashing the power of boron: enhancing nitrogen reduction reaction through defective ReS
    Ho TH; Bui VQ; Nguyen QAT; Kawazoe Y; Kim SG; Nam PC
    Phys Chem Chem Phys; 2023 Sep; 25(37):25389-25397. PubMed ID: 37705426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput screening of single metal atom anchored on N-doped boron phosphide for N
    Chen Y; Zhang X; Qin J; Liu R
    Nanoscale; 2021 Aug; 13(31):13437-13450. PubMed ID: 34477749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational screening of MBene monolayers with high electrocatalytic activity for the nitrogen reduction reaction.
    Li Y; Li L; Huang R; Wen Y
    Nanoscale; 2021 Sep; 13(35):15002-15009. PubMed ID: 34533185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring the coordination environment of double-atom catalysts to boost electrocatalytic nitrogen reduction: a first-principles study.
    Wu J; Wu D; Li H; Song Y; Lv W; Yu X; Ma D
    Nanoscale; 2023 Oct; 15(39):16056-16067. PubMed ID: 37728053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mo
    Wan Y; Wang Z; Li J; Lv R
    ACS Nano; 2022 Jan; 16(1):643-654. PubMed ID: 34964347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ni-Doped Mo
    Song Y; Wang H; Song Z; Zheng X; Fan B; Han X; Deng Y; Hu W
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17273-17281. PubMed ID: 35388700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double boron atom-doped graphdiynes as efficient metal-free electrocatalysts for nitrogen reduction into ammonia: a first-principles study.
    Fu C; Li Y; Wei H
    Phys Chem Chem Phys; 2021 Aug; 23(32):17683-17692. PubMed ID: 34373884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of boron doping on electrocatalytic activities of graphyne and graphdiyne families: a first principles study.
    Das BK; Sen D; Chattopadhyay KK
    Phys Chem Chem Phys; 2016 Jan; 18(4):2949-58. PubMed ID: 26735306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Peripheral Coordination Boron in Electrocatalytic Nitrogen Reduction over N-Doped Graphene-Supported Single-Atom Catalysts.
    Ma R; Weng X; Lin L; Zhao J; Wei F; Lin S
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered Electron-Deficient Sites at Boron-Doped Strontium Titanate/Electrolyte Interfaces Accelerate the Electrocatalytic Reduction of N
    Kalra P; Samolia M; Bashir AU; Avasare VD; Ingole PP
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 39012060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting Electrocatalytic N
    Li M; Cui Y; Sun L; Zhang X; Peng L; Huang Y
    Inorg Chem; 2020 Apr; 59(7):4858-4867. PubMed ID: 32186857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.