These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37358367)

  • 21. Effect of the ortho-Hydroxyl Groups on a Bipyridine Ligand of Iridium Complexes for the High-Pressure Gas Generation from the Catalytic Decomposition of Formic Acid.
    Iguchi M; Zhong H; Himeda Y; Kawanami H
    Chemistry; 2017 Dec; 23(70):17788-17793. PubMed ID: 28960487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Base-free production of H2 by dehydrogenation of formic acid using an iridium-bisMETAMORPhos complex.
    Oldenhof S; de Bruin B; Lutz M; Siegler MA; Patureau FW; van der Vlugt JI; Reek JN
    Chemistry; 2013 Aug; 19(35):11507-11. PubMed ID: 23873845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Base-Free Dehydrogenation of Aqueous and Neat Formic Acid with Iridium(III) Cp*(dipyridylamine) Catalysts.
    Wang S; Huang H; Roisnel T; Bruneau C; Fischmeister C
    ChemSusChem; 2019 Jan; 12(1):179-184. PubMed ID: 30325585
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ligand Effect on the Stability of Water-Soluble Iridium Catalysts for High-Pressure Hydrogen Gas Production by Dehydrogenation of Formic Acid.
    Iguchi M; Onishi N; Himeda Y; Kawanami H
    Chemphyschem; 2019 May; 20(10):1296-1300. PubMed ID: 30884093
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of Green Cosolvents on the Catalytic Dehydrogenation of Formic Acid: The Case of Iridium Catalysts Bearing NHC-phosphane Ligands.
    Luque-Gómez A; García-Abellán S; Munarriz J; Polo V; Passarelli V; Iglesias M
    Inorg Chem; 2021 Oct; 60(20):15497-15508. PubMed ID: 34558914
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dehydrogenation of saturated CC and BN bonds at cationic N-heterocyclic carbene stabilized M(III) centers (M = Rh, Ir).
    Tang CY; Thompson AL; Aldridge S
    J Am Chem Soc; 2010 Aug; 132(30):10578-91. PubMed ID: 20662531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formic acid dehydrogenation with bioinspired iridium complexes: a kinetic isotope effect study and mechanistic insight.
    Wang WH; Xu S; Manaka Y; Suna Y; Kambayashi H; Muckerman JT; Fujita E; Himeda Y
    ChemSusChem; 2014 Jul; 7(7):1976-83. PubMed ID: 24840600
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A leap forward in iridium-NHC catalysis: new horizons and mechanistic insights.
    Iglesias M; Oro LA
    Chem Soc Rev; 2018 Apr; 47(8):2772-2808. PubMed ID: 29557434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformational twisting of a formate-bridged diiridium complex enables catalytic formic acid dehydrogenation.
    Lauridsen PJ; Lu Z; Celaje JJA; Kedzie EA; Williams TJ
    Dalton Trans; 2018 Oct; 47(38):13559-13564. PubMed ID: 30206593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogen shuttling: synthesis and reactivity of a 14-electron iridium complex featuring a bis(alkyl) tethered N-heterocyclic carbene ligand.
    Tang CY; Phillips N; Kelly MJ; Aldridge S
    Chem Commun (Camb); 2012 Dec; 48(98):11999-2001. PubMed ID: 23128505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iridium-Catalyzed C(sp
    Kawazu R; Torigoe T; Kuninobu Y
    Angew Chem Int Ed Engl; 2022 May; 61(22):e202202327. PubMed ID: 35262270
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding the Deactivation Pathways of Iridium(III) Pyridine-Carboxiamide Catalysts for Formic Acid Dehydrogenation.
    Menendez Rodriguez G; Zaccaria F; Tensi L; Zuccaccia C; Belanzoni P; Macchioni A
    Chemistry; 2021 Jan; 27(6):2050-2064. PubMed ID: 33141938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An electron poor iridium pincer complex for catalytic alkane dehydrogenation.
    Kovalenko OO; Wendt OF
    Dalton Trans; 2016 Oct; 45(40):15963-15969. PubMed ID: 27406895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dehydrogenation of n-Alkanes by Solid-Phase Molecular Pincer-Iridium Catalysts. High Yields of α-Olefin Product.
    Kumar A; Zhou T; Emge TJ; Mironov O; Saxton RJ; Krogh-Jespersen K; Goldman AS
    J Am Chem Soc; 2015 Aug; 137(31):9894-911. PubMed ID: 26200219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Picolinamide-Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability.
    Kanega R; Onishi N; Wang L; Murata K; Muckerman JT; Fujita E; Himeda Y
    Chemistry; 2018 Dec; 24(69):18389-18392. PubMed ID: 29493841
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A long-tethered (P-B-P)-pincer ligand: synthesis, complexation, and application to catalytic dehydrogenation of alkanes.
    Kwan EH; Kawai YJ; Kamakura S; Yamashita M
    Dalton Trans; 2016 Oct; 45(40):15931-15941. PubMed ID: 27383267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and Isolation of an Anionic Bis(dipyrido-annulated) N-Heterocyclic Carbene CCC-Pincer Iridium(III) Complex by Facile C-H Bond Activation.
    Nakanishi K; Jimenez-Halla JOC; Yamazoe S; Nakamoto M; Shang R; Yamamoto Y
    Inorg Chem; 2021 Jul; 60(13):9970-9976. PubMed ID: 34156239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cobalt-Catalyzed Aqueous Dehydrogenation of Formic Acid.
    Zhou W; Wei Z; Spannenberg A; Jiao H; Junge K; Junge H; Beller M
    Chemistry; 2019 Jun; 25(36):8459-8464. PubMed ID: 30938464
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of A Pincer-Ir
    Morisako S; Watanabe S; Ikemoto S; Muratsugu S; Tada M; Yamashita M
    Angew Chem Int Ed Engl; 2019 Oct; 58(42):15031-15035. PubMed ID: 31397531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of an Iridium-Based Catalyst for High-Pressure Evolution of Hydrogen from Formic Acid.
    Iguchi M; Himeda Y; Manaka Y; Kawanami H
    ChemSusChem; 2016 Oct; 9(19):2749-2753. PubMed ID: 27530918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.