These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 37358451)

  • 1. Type III Secretion in
    Rucks EA
    Microbiol Mol Biol Rev; 2023 Sep; 87(3):e0003423. PubMed ID: 37358451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserved type III secretion system exerts important roles in Chlamydia trachomatis.
    Dai W; Li Z
    Int J Clin Exp Pathol; 2014; 7(9):5404-14. PubMed ID: 25337183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of Chlamydia trachomatis with a small molecule inhibitor of the Yersinia type III secretion system disrupts progression of the chlamydial developmental cycle.
    Wolf K; Betts HJ; Chellas-Géry B; Hower S; Linton CN; Fields KA
    Mol Microbiol; 2006 Sep; 61(6):1543-55. PubMed ID: 16968227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity.
    Grieshaber S; Grieshaber N; Yang H; Baxter B; Hackstadt T; Omsland A
    J Bacteriol; 2018 Jul; 200(14):. PubMed ID: 29735758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism.
    Fields KA; Hackstadt T
    Mol Microbiol; 2000 Dec; 38(5):1048-60. PubMed ID: 11123678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of homologs of the Chlamydia trachomatis effector CteG reveals a family of Chlamydiaceae type III secreted proteins that can be delivered into host cells.
    Pereira IS; da Cunha M; Leal IP; Luís MP; Gonçalves P; Gonçalves C; Mota LJ
    Med Microbiol Immunol; 2024 Jul; 213(1):15. PubMed ID: 39008129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Context-Dependent Action of Scc4 Reinforces Control of the Type III Secretion System.
    Gao L; Cong Y; Plano GV; Rao X; Gisclair LN; Schesser Bartra S; Macnaughtan MA; Shen L
    J Bacteriol; 2020 Jul; 202(15):. PubMed ID: 32424009
    [No Abstract]   [Full Text] [Related]  

  • 8. Induction of type III secretion by cell-free Chlamydia trachomatis elementary bodies.
    Jamison WP; Hackstadt T
    Microb Pathog; 2008; 45(5-6):435-40. PubMed ID: 18984037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tag-Dependent Substrate Selection of ClpX Underlies Secondary Differentiation of Chlamydia trachomatis.
    Wood NA; Swoboda AR; Blocker AM; Fisher DJ; Ouellette SP
    mBio; 2022 Oct; 13(5):e0185822. PubMed ID: 36154190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Modeling of the Chlamydial Developmental Cycle Reveals a Potential Role for Asymmetric Division.
    Chiarelli TJ; Grieshaber NA; Appa C; Grieshaber SS
    mSystems; 2023 Apr; 8(2):e0005323. PubMed ID: 36927072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydia trachomatis Slc1 is a type III secretion chaperone that enhances the translocation of its invasion effector substrate TARP.
    Brinkworth AJ; Malcolm DS; Pedrosa AT; Roguska K; Shahbazian S; Graham JE; Hayward RD; Carabeo RA
    Mol Microbiol; 2011 Oct; 82(1):131-44. PubMed ID: 21883523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ClpX and ClpP2 Orthologs of Chlamydia trachomatis Perform Discrete and Essential Functions in Organism Growth and Development.
    Wood NA; Blocker AM; Seleem MA; Conda-Sheridan M; Fisher DJ; Ouellette SP
    mBio; 2020 Sep; 11(5):. PubMed ID: 32873765
    [No Abstract]   [Full Text] [Related]  

  • 13. Chlamydia trachomatis TmeA Directly Activates N-WASP To Promote Actin Polymerization and Functions Synergistically with TarP during Invasion.
    Keb G; Ferrell J; Scanlon KR; Jewett TJ; Fields KA
    mBio; 2021 Jan; 12(1):. PubMed ID: 33468693
    [No Abstract]   [Full Text] [Related]  

  • 14. Host-pathogen reorganisation during host cell entry by Chlamydia trachomatis.
    Nans A; Ford C; Hayward RD
    Microbes Infect; 2015; 17(11-12):727-31. PubMed ID: 26320027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of β-lactamase reporter fusions as an indicator of effector protein secretion during infections with the obligate intracellular pathogen Chlamydia trachomatis.
    Mueller KE; Fields KA
    PLoS One; 2015; 10(8):e0135295. PubMed ID: 26258949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of chlamydial T3SS inhibitors through virtual screening against T3SS ATPase.
    Grishin AV; Luyksaar SI; Kapotina LN; Kirsanov DD; Zayakin ES; Karyagina AS; Zigangirova NA
    Chem Biol Drug Des; 2018 Mar; 91(3):717-727. PubMed ID: 29068165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Periplasmic Tail-Specific Protease, Tsp, Is Essential for Secondary Differentiation in
    Swoboda AR; Wood NA; Saery EA; Fisher DJ; Ouellette SP
    J Bacteriol; 2023 May; 205(5):e0009923. PubMed ID: 37092988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development.
    Hower S; Wolf K; Fields KA
    Mol Microbiol; 2009 Jun; 72(6):1423-37. PubMed ID: 19460098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development.
    Fields KA; Mead DJ; Dooley CA; Hackstadt T
    Mol Microbiol; 2003 May; 48(3):671-83. PubMed ID: 12694613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Inclusion Kinetics of
    Chiarelli TJ; Grieshaber NA; Omsland A; Remien CH; Grieshaber SS
    mSystems; 2020 Oct; 5(5):. PubMed ID: 33051378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.