These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 373587)
1. Extracellular potassium in the mammalian central nervous system. Somjen GG Annu Rev Physiol; 1979; 41():159-77. PubMed ID: 373587 [No Abstract] [Full Text] [Related]
2. Mechanisms for the passive regulation of extracellular K+ in the central nervous system: the implications of invertebrate studies. Abbott NJ; Pichon Y Adv Exp Med Biol; 1976; 69():151-64. PubMed ID: 782189 [No Abstract] [Full Text] [Related]
3. Activation of experimental epileptogenic foci. Action of increased K+ in extracellular spaces of the brain. Zuckermann EC; Glaser GH Arch Neurol; 1970 Oct; 23(4):358-64. PubMed ID: 4920209 [No Abstract] [Full Text] [Related]
4. Glial K+ permeability and CNS K+ clearance by diffusion and spatial buffering. Reichenbach A Ann N Y Acad Sci; 1991; 633():272-86. PubMed ID: 1789554 [No Abstract] [Full Text] [Related]
5. Changes in extracellular potassium activity during neocortical propagated seizures. Sypert GW; Ward AA Exp Neurol; 1974 Oct; 45(1):19-41. PubMed ID: 4412381 [No Abstract] [Full Text] [Related]
6. Symposium on membrane transport. Transport in the central nervous system. Davson H; Oldendorf WH Proc R Soc Med; 1967 Apr; 60(4):326-9. PubMed ID: 6021942 [No Abstract] [Full Text] [Related]
7. Mobility and localization of proteins in excitable membranes. Poo MM Annu Rev Neurosci; 1985; 8():369-406. PubMed ID: 2580473 [No Abstract] [Full Text] [Related]
9. [Kinetics of extracellular potassium at the epileptogenic focus]. Iwayama K; Mori K; Ono H; Yonekura M No To Shinkei; 1976 May; 28(5):487-92. PubMed ID: 1036067 [No Abstract] [Full Text] [Related]
10. Blood-brain barrier: evidence for active cation transport between blood and the extracellular fluid of brain. Bito LZ Science; 1968 Jul; 165(3888):81-3. PubMed ID: 5729683 [No Abstract] [Full Text] [Related]
11. Extracellular K+ accumulation in the central nervous system. Syková E Prog Biophys Mol Biol; 1983; 42(2-3):135-89. PubMed ID: 6139844 [No Abstract] [Full Text] [Related]
12. Brain extracellular potassium activity during hypoxia in the cat. Kirshner HS; Blank WF; Myers RE Neurology; 1975 Nov; 25(11):1001-5. PubMed ID: 1237815 [TBL] [Abstract][Full Text] [Related]
13. Maintenance of a constant brain extracellular potassium. Katzman R Fed Proc; 1976 May; 35(6):1244-7. PubMed ID: 770198 [TBL] [Abstract][Full Text] [Related]
14. The contribution of local blood flow to the rapid clearance of potassium from the cortical extracellular space. Mutsuga N; Schuette WH; Lewis DV Brain Res; 1976 Nov; 116(3):431-6. PubMed ID: 974786 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of the brain cell microenvironment. Nicholson C Neurosci Res Program Bull; 1980 Apr; 18(2):175-322. PubMed ID: 6993989 [No Abstract] [Full Text] [Related]
16. The mechanism of potassium dispersal in brain tissue [proceedings]. Gardner-Medwin AR; Gibson JL; Willshaw DJ J Physiol; 1979 Aug; 293():37P-38P. PubMed ID: 501608 [No Abstract] [Full Text] [Related]
17. [Adrenomedullin in the central nervous system]. Ueta Y Nihon Rinsho; 2004 Sep; 62 Suppl 9():246-51. PubMed ID: 15506379 [No Abstract] [Full Text] [Related]
18. Potassium accumulation in interstitial space during epileptiform seizures. Fertziger AP; Ranck JB Exp Neurol; 1970 Mar; 26(3):571-85. PubMed ID: 5435740 [No Abstract] [Full Text] [Related]
19. Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. Sokoloff L J Cereb Blood Flow Metab; 1981; 1(1):7-36. PubMed ID: 7035471 [No Abstract] [Full Text] [Related]
20. Role of astrocytes in the clearance of excess extracellular potassium. Walz W Neurochem Int; 2000 Apr; 36(4-5):291-300. PubMed ID: 10732996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]