These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Unimolecular Reactions of 2-Methyloxetanyl and 2-Methyloxetanylperoxy Radicals. Doner AC; Dewey NS; Rotavera B J Phys Chem A; 2023 Aug; 127(32):6816-6829. PubMed ID: 37535464 [TBL] [Abstract][Full Text] [Related]
8. Reaction Pathways, Thermodynamics, and Kinetics of Cyclopentanone Oxidation Intermediates: A Theoretical Approach. Khanniche S; Green WH J Phys Chem A; 2019 Nov; 123(45):9644-9657. PubMed ID: 31532679 [TBL] [Abstract][Full Text] [Related]
9. Pressure-Dependent Competition among Reaction Pathways from First- and Second-O2 Additions in the Low-Temperature Oxidation of Tetrahydrofuran. Antonov IO; Zádor J; Rotavera B; Papajak E; Osborn DL; Taatjes CA; Sheps L J Phys Chem A; 2016 Aug; 120(33):6582-95. PubMed ID: 27441526 [TBL] [Abstract][Full Text] [Related]
10. Time-resolved measurements of product formation in the low-temperature (550-675 K) oxidation of neopentane: a probe to investigate chain-branching mechanism. Eskola AJ; Antonov IO; Sheps L; Savee JD; Osborn DL; Taatjes CA Phys Chem Chem Phys; 2017 May; 19(21):13731-13745. PubMed ID: 28503692 [TBL] [Abstract][Full Text] [Related]
11. Photoionization mass spectrometric measurements of initial reaction pathways in low-temperature oxidation of 2,5-dimethylhexane. Rotavera B; Zádor J; Welz O; Sheps L; Scheer AM; Savee JD; Akbar Ali M; Lee TS; Simmons BA; Osborn DL; Violi A; Taatjes CA J Phys Chem A; 2014 Nov; 118(44):10188-200. PubMed ID: 25234586 [TBL] [Abstract][Full Text] [Related]
12. Direct time-resolved detection and quantification of key reactive intermediates in diethyl ether oxidation at T = 450-600 K. Demireva M; Au K; Sheps L Phys Chem Chem Phys; 2020 Nov; 22(42):24649-24661. PubMed ID: 33099590 [TBL] [Abstract][Full Text] [Related]
13. Low-temperature combustion chemistry of novel biofuels: resonance-stabilized QOOH in the oxidation of diethyl ketone. Scheer AM; Welz O; Zádor J; Osborn DL; Taatjes CA Phys Chem Chem Phys; 2014 Jul; 16(26):13027-40. PubMed ID: 24585023 [TBL] [Abstract][Full Text] [Related]
14. Role of O2 + QOOH in low-temperature ignition of propane. 1. Temperature and pressure dependent rate coefficients. Goldsmith CF; Green WH; Klippenstein SJ J Phys Chem A; 2012 Apr; 116(13):3325-46. PubMed ID: 22250995 [TBL] [Abstract][Full Text] [Related]
15. Temperature and Pressure Dependent Kinetics of QOOH Decomposition and Reaction with O Whelan CA; Blitz MA; Shannon R; Onel L; Lockhart JP; Seakins PW; Stone D J Phys Chem A; 2019 Nov; 123(47):10254-10262. PubMed ID: 31661276 [TBL] [Abstract][Full Text] [Related]
17. Combined Experimental and Computational Study on the Unimolecular Decomposition of JP-8 Jet Fuel Surrogates. II: n-Dodecane (n-C Zhao L; Yang T; Kaiser RI; Troy TP; Ahmed M; Ribeiro JM; Belisario-Lara D; Mebel AM J Phys Chem A; 2017 Feb; 121(6):1281-1297. PubMed ID: 28088866 [TBL] [Abstract][Full Text] [Related]
18. Kinetic Analysis for Reaction of Cyclopentadiene with Hydroperoxyl Radical under Low- and Medium-Temperature Combustion. Xu SM; Sun XH; Zong WG; Li ZR; Li XY J Phys Chem A; 2020 Oct; 124(40):8280-8291. PubMed ID: 32924506 [TBL] [Abstract][Full Text] [Related]
19. Isomer-Selective Detection of Keto-Hydroperoxides in the Low-Temperature Oxidation of Tetrahydrofuran. Hansen N; Moshammer K; Jasper AW J Phys Chem A; 2019 Sep; 123(38):8274-8284. PubMed ID: 31483667 [TBL] [Abstract][Full Text] [Related]
20. Time-resolved quantification of key species and mechanistic insights in low-temperature tetrahydrofuran oxidation. Demireva M; Au K; Hansen N; Sheps L Phys Chem Chem Phys; 2024 Mar; 26(13):10357-10368. PubMed ID: 38502092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]