These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 37360758)
1. A survey on Lyapunov functions for epidemic compartmental models. Cangiotti N; Capolli M; Sensi M; Sottile S Boll Unione Mat Ital (2008); 2023 Jun; ():1-17. PubMed ID: 37360758 [TBL] [Abstract][Full Text] [Related]
2. Global stability of latency-age/stage-structured epidemic models with differential infectivity. Liu X; Chen Y; Li X; Li J J Math Biol; 2023 Apr; 86(5):80. PubMed ID: 37093296 [TBL] [Abstract][Full Text] [Related]
3. Global dynamics of a multi-strain SEIR epidemic model with general incidence rates: application to COVID-19 pandemic. Khyar O; Allali K Nonlinear Dyn; 2020; 102(1):489-509. PubMed ID: 32921921 [TBL] [Abstract][Full Text] [Related]
4. Dynamic Analysis and Optimal Control of Rumor Spreading Model with Recurrence and Individual Behaviors in Heterogeneous Networks. Tong X; Jiang H; Chen X; Yu S; Li J Entropy (Basel); 2022 Mar; 24(4):. PubMed ID: 35455127 [TBL] [Abstract][Full Text] [Related]
5. Global stability for epidemic model with constant latency and infectious periods. Huang G; Beretta E; Takeuchi Y Math Biosci Eng; 2012 Apr; 9(2):297-312. PubMed ID: 22901066 [TBL] [Abstract][Full Text] [Related]
6. A delayed eco-epidemiological system with infected prey and predator subject to the weak Allee effect. Biswas S; Sasmal SK; Samanta S; Saifuddin M; Khan QJ; Chattopadhyay J Math Biosci; 2015 May; 263():198-208. PubMed ID: 25747414 [TBL] [Abstract][Full Text] [Related]
7. Global stability and persistence in LG-Holling type II diseased predator ecosystems. Sarwardi S; Haque M; Venturino E J Biol Phys; 2011 Jan; 37(1):91-106. PubMed ID: 22210964 [TBL] [Abstract][Full Text] [Related]
8. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate. Huang G; Takeuchi Y; Ma W; Wei D Bull Math Biol; 2010 Jul; 72(5):1192-207. PubMed ID: 20091354 [TBL] [Abstract][Full Text] [Related]
9. A Deterministic Compartmental Modeling Framework for Disease Transmission. Villasin KJB; Rodriguez EM; Lao AR Methods Mol Biol; 2021; 2189():157-167. PubMed ID: 33180300 [TBL] [Abstract][Full Text] [Related]
10. The influence of awareness campaigns on the spread of an infectious disease: a qualitative analysis of a fractional epidemic model. Akdim K; Ez-Zetouni A; Zahid M Model Earth Syst Environ; 2022; 8(1):1311-1319. PubMed ID: 33851007 [TBL] [Abstract][Full Text] [Related]
11. Analysis of a COVID-19 compartmental model: a mathematical and computational approach. Abreu Z; Cantin G; Silva CJ Math Biosci Eng; 2021 Sep; 18(6):7979-7998. PubMed ID: 34814285 [TBL] [Abstract][Full Text] [Related]
12. The stochastic evolution of a rumor spreading model with two distinct spread inhibiting and attitude adjusting mechanisms in a homogeneous social network. Li M; Zhang H; Georgescu P; Li T Physica A; 2021 Jan; 562():125321. PubMed ID: 33012966 [TBL] [Abstract][Full Text] [Related]
13. Modelling the dynamics of direct and pathogens-induced dysentery diarrhoea epidemic with controls. Berhe HW; Makinde OD; Theuri DM J Biol Dyn; 2019 Dec; 13(1):192-217. PubMed ID: 30843764 [TBL] [Abstract][Full Text] [Related]
14. Delay differential equations for the spatially resolved simulation of epidemics with specific application to COVID-19. Guglielmi N; Iacomini E; Viguerie A Math Methods Appl Sci; 2022 May; 45(8):4752-4771. PubMed ID: 35464828 [TBL] [Abstract][Full Text] [Related]
15. Modelling coupled within host and population dynamics of [Formula: see text] and [Formula: see text] HIV infection. Manda EC; Chirove F J Math Biol; 2018 Apr; 76(5):1123-1158. PubMed ID: 28762130 [TBL] [Abstract][Full Text] [Related]
16. Large number of endemic equilibria for disease transmission models in patchy environment. Knipl DH; Röst G Math Biosci; 2014 Dec; 258():201-22. PubMed ID: 25223233 [TBL] [Abstract][Full Text] [Related]
17. On the stability of the diffusive and non-diffusive predator-prey system with consuming resources and disease in prey species. Arif MS; Abodayeh K; Ejaz A Math Biosci Eng; 2023 Jan; 20(3):5066-5093. PubMed ID: 36896536 [TBL] [Abstract][Full Text] [Related]
19. Bifurcation analysis of a pair-wise epidemic model on adaptive networks. Lu JN; Zhang XG Math Biosci Eng; 2019 Apr; 16(4):2973-2989. PubMed ID: 31137246 [TBL] [Abstract][Full Text] [Related]
20. Analysis of an asymmetric two-strain dengue model. Kooi BW; Aguiar M; Stollenwerk N Math Biosci; 2014 Feb; 248():128-39. PubMed ID: 24434818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]