These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 37360758)
21. Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Korobeinikov A Bull Math Biol; 2006 Apr; 68(3):615-26. PubMed ID: 16794947 [TBL] [Abstract][Full Text] [Related]
22. The role of transmissible diseases in the Holling-Tanner predator-prey model. Haque M; Venturino E Theor Popul Biol; 2006 Nov; 70(3):273-88. PubMed ID: 16905167 [TBL] [Abstract][Full Text] [Related]
23. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. van den Driessche P; Watmough J Math Biosci; 2002; 180():29-48. PubMed ID: 12387915 [TBL] [Abstract][Full Text] [Related]
24. Classification of different Hepatitis B infected individuals with saturated incidence rate. Khan T; Zaman G Springerplus; 2016; 5(1):1082. PubMed ID: 27468382 [TBL] [Abstract][Full Text] [Related]
25. Mathematical assessment of the dynamics of novel coronavirus infection with treatment: A fractional study. Liu X; Ullah S; Alshehri A; Altanji M Chaos Solitons Fractals; 2021 Dec; 153():111534. PubMed ID: 34751202 [TBL] [Abstract][Full Text] [Related]
26. Consequences of symbiosis for food web dynamics. Kooi BW; Kuijper LD; Kooijman SA J Math Biol; 2004 Sep; 49(3):227-71. PubMed ID: 15293013 [TBL] [Abstract][Full Text] [Related]
27. Lyapunov functions and global properties for SEIR and SEIS epidemic models. Korobeinikov A Math Med Biol; 2004 Jun; 21(2):75-83. PubMed ID: 15228100 [TBL] [Abstract][Full Text] [Related]
28. Global dynamics of a mathematical model for the possible re-emergence of polio. Dénes A; Székely L Math Biosci; 2017 Nov; 293():64-74. PubMed ID: 28859911 [TBL] [Abstract][Full Text] [Related]
29. Global stability of an age-structured epidemic model with general Lyapunov functional. Chekroun A; Frioui MN; Kuniya T; Touaoula TM Math Biosci Eng; 2019 Feb; 16(3):1525-1553. PubMed ID: 30947431 [TBL] [Abstract][Full Text] [Related]
30. Complex dynamical study of a delayed prey-predator model with fear in prey and square root harvesting of both species. Sarif N; Sarwardi S Chaos; 2023 Mar; 33(3):033112. PubMed ID: 37003791 [TBL] [Abstract][Full Text] [Related]
31. Compartmental modeling in the analysis of biological systems. Bassingthwaighte JB; Butterworth E; Jardine B; Raymond GM Methods Mol Biol; 2012; 929():391-438. PubMed ID: 23007439 [TBL] [Abstract][Full Text] [Related]
32. Stability of ecosystem: global properties of a general predator-prey model. Korobeinikov A Math Med Biol; 2009 Dec; 26(4):309-21. PubMed ID: 19380507 [TBL] [Abstract][Full Text] [Related]
33. SIR-SVS epidemic models with continuous and impulsive vaccination strategies. Li J; Yang Y J Theor Biol; 2011 Jul; 280(1):108-16. PubMed ID: 21477598 [TBL] [Abstract][Full Text] [Related]
34. On the global stability of an epidemic model of computer viruses. Parsaei MR; Javidan R; Shayegh Kargar N; Saberi Nik H Theory Biosci; 2017 Dec; 136(3-4):169-178. PubMed ID: 28776127 [TBL] [Abstract][Full Text] [Related]
35. A lyapunov function and global properties for sir and seir epidemiological models with nonlinear incidence. Korobeinikov A; Maini PK Math Biosci Eng; 2004 Jun; 1(1):57-60. PubMed ID: 20369959 [TBL] [Abstract][Full Text] [Related]
36. Derivation and Analysis of a Discrete Predator-Prey Model. Streipert SH; Wolkowicz GSK; Bohner M Bull Math Biol; 2022 May; 84(7):67. PubMed ID: 35596850 [TBL] [Abstract][Full Text] [Related]
37. Global stability for cholera epidemic models. Tian JP; Wang J Math Biosci; 2011 Jul; 232(1):31-41. PubMed ID: 21513717 [TBL] [Abstract][Full Text] [Related]
38. Effects of prey refuge and predator cooperation on a predator-prey system. Jang SR; Yousef AM J Biol Dyn; 2023 Dec; 17(1):2242372. PubMed ID: 37534883 [TBL] [Abstract][Full Text] [Related]
39. Diffusion-reaction compartmental models formulated in a continuum mechanics framework: application to COVID-19, mathematical analysis, and numerical study. Viguerie A; Veneziani A; Lorenzo G; Baroli D; Aretz-Nellesen N; Patton A; Yankeelov TE; Reali A; Hughes TJR; Auricchio F Comput Mech; 2020; 66(5):1131-1152. PubMed ID: 32836602 [TBL] [Abstract][Full Text] [Related]
40. Input-to-state stability of time-varying nonlinear discrete-time systems via indefinite difference Lyapunov functions. Li H; Liu A; Zhang L ISA Trans; 2018 Jun; 77():71-76. PubMed ID: 29650241 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]