These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 37361862)
1. Optimizing ship speed depending on cargo and wind-sea conditions for sustainable blue growth and climate change mitigation. Baştürk S; Erol S J Mar Sci Technol; 2023 Jun; ():1-16. PubMed ID: 37361862 [TBL] [Abstract][Full Text] [Related]
2. Bionics and green technology in maritime shipping: an assessment of the effect of Salvinia air-layer hull coatings for drag and fuel reduction. Busch J; Barthlott W; Brede M; Terlau W; Mail M Philos Trans A Math Phys Eng Sci; 2019 Feb; 377(2138):20180263. PubMed ID: 30967069 [TBL] [Abstract][Full Text] [Related]
3. Advanced operational measure for reducing fuel consumption onboard ships. Elkafas AG Environ Sci Pollut Res Int; 2022 Dec; 29(60):90509-90519. PubMed ID: 35870069 [TBL] [Abstract][Full Text] [Related]
4. Diverse changes in shipping emissions around the Western Pacific ports under the coeffect of the epidemic and fuel oil policy. Yuan Y; Zhang Y; Mao J; Yu G; Xu K; Zhao J; Qian H; Wu L; Yang X; Chen Y; Ma W Sci Total Environ; 2023 Jun; 879():162892. PubMed ID: 36934943 [TBL] [Abstract][Full Text] [Related]
5. NOx Emissions Control Area (NECA) scenario for ports in the North Adriatic Sea. Topic T; Murphy AJ; Pazouki K; Norman R J Environ Manage; 2023 Oct; 344():118712. PubMed ID: 37573694 [TBL] [Abstract][Full Text] [Related]
6. An environmental and economic analysis of emission reduction strategies for container ships with emphasis on the improved energy efficiency indexes. Ammar NR; Seddiek IS Environ Sci Pollut Res Int; 2020 Jun; 27(18):23342-23355. PubMed ID: 32338322 [TBL] [Abstract][Full Text] [Related]
7. Harnessing wind energy on merchant ships: case study Flettner rotors onboard bulk carriers. Seddiek IS; Ammar NR Environ Sci Pollut Res Int; 2021 Feb; 28(25):32695-707. PubMed ID: 33630258 [TBL] [Abstract][Full Text] [Related]
8. Total life cycle emissions of post-Panamax containerships powered by conventional fuel or natural gas. Hua J; Cheng CW; Hwang DS J Air Waste Manag Assoc; 2019 Feb; 69(2):131-144. PubMed ID: 30067463 [TBL] [Abstract][Full Text] [Related]
9. Comparative analysis between different methods for calculating on-board ship's emissions and energy consumption based on operational data. Moreno-Gutiérrez J; Pájaro-Velázquez E; Amado-Sánchez Y; Rodríguez-Moreno R; Calderay-Cayetano F; Durán-Grados V Sci Total Environ; 2019 Feb; 650(Pt 1):575-584. PubMed ID: 30205347 [TBL] [Abstract][Full Text] [Related]
10. Global Shipping Emissions from a Well-to-Wake Perspective: The MariTEAM Model. Kramel D; Muri H; Kim Y; Lonka R; Nielsen JB; Ringvold AL; Bouman EA; Steen S; Strømman AH Environ Sci Technol; 2021 Nov; 55(22):15040-15050. PubMed ID: 34705455 [TBL] [Abstract][Full Text] [Related]
11. Environmental economic analysis of speed reduction measure onboard container ships. Elkafas AG; Rivarolo M; Massardo AF Environ Sci Pollut Res Int; 2023 May; 30(21):59645-59659. PubMed ID: 37012573 [TBL] [Abstract][Full Text] [Related]
12. Present-day and future global bottom-up ship emission inventories including polar routes. Paxian A; Eyring V; Beer W; Sausen R; Wright C Environ Sci Technol; 2010 Feb; 44(4):1333-9. PubMed ID: 20088494 [TBL] [Abstract][Full Text] [Related]
13. Experimental investigation on NOx and green house gas emissions from a marine auxiliary diesel engine using ultralow sulfur light fuel. Geng P; Tan Q; Zhang C; Wei L; He X; Cao E; Jiang K Sci Total Environ; 2016 Dec; 572():467-475. PubMed ID: 27544351 [TBL] [Abstract][Full Text] [Related]
14. Investigation of sniffer technique on remote measurement of ship emissions: A case study in Shanghai, China. Li X; Li K; Ji Q; Shen F; Wu Q; Chen Q; Luo L; Bian X; Chen W; Lou D PLoS One; 2022; 17(9):e0274236. PubMed ID: 36112596 [TBL] [Abstract][Full Text] [Related]
15. Numerical analysis of economic and environmental benefits of marine fuel conversion from diesel oil to natural gas for container ships. Elkafas AG; Elgohary MM; Shouman MR Environ Sci Pollut Res Int; 2021 Mar; 28(12):15210-15222. PubMed ID: 33236307 [TBL] [Abstract][Full Text] [Related]
16. Environmental impact of exhaust emissions by Arctic shipping. Schröder C; Reimer N; Jochmann P Ambio; 2017 Dec; 46(Suppl 3):400-409. PubMed ID: 29067640 [TBL] [Abstract][Full Text] [Related]
17. Impact analysis of ECA policies on ship trajectories and emissions. Weng J; Han T; Shi K; Li G Mar Pollut Bull; 2022 Jun; 179():113687. PubMed ID: 35504212 [TBL] [Abstract][Full Text] [Related]
18. Decarbonising ASEAN coastal shipping: Addressing climate change and coastal ecosystem issues through sustainable carbon neutrality strategies. Oloruntobi O; Chuah LF; Mokhtar K; Gohari A; Rady A; Abo-Eleneen RE; Akhtar MS; Mubashir M Environ Res; 2024 Jan; 240(Pt 2):117353. PubMed ID: 37821061 [TBL] [Abstract][Full Text] [Related]
19. The mortality effect of ship-related fine particulate matter in the Sydney greater metropolitan region of NSW, Australia. Broome RA; Cope ME; Goldsworthy B; Goldsworthy L; Emmerson K; Jegasothy E; Morgan GG Environ Int; 2016 Feb; 87():85-93. PubMed ID: 26641523 [TBL] [Abstract][Full Text] [Related]
20. Carbon reduction and cost control of container shipping in response to the European Union Emission Trading System. Sun L; Wang X; Hu Z; Liu W; Ning Z Environ Sci Pollut Res Int; 2024 Mar; 31(14):21172-21188. PubMed ID: 38388976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]