These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 37362594)

  • 1. GARCHNet: Value-at-Risk Forecasting with GARCH Models Based on Neural Networks.
    Buczynski M; Chlebus M
    Comput Econ; 2023 May; ():1-31. PubMed ID: 37362594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heteroscedasticity effects as component to future stock market predictions using RNN-based models.
    Sadon AN; Ismail S; Khamis A; Tariq MU
    PLoS One; 2024; 19(5):e0297641. PubMed ID: 38787874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How to Promote the Performance of Parametric Volatility Forecasts in the Stock Market? A Neural Networks Approach.
    Su JB
    Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LSTM-GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios.
    García-Medina A; Aguayo-Moreno E
    Comput Econ; 2023 Mar; ():1-32. PubMed ID: 37362593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling time-varying volatility using GARCH models: evidence from the Indian stock market.
    Ali F; Suri P; Kaur T; Bisht D
    F1000Res; 2022; 11():1098. PubMed ID: 36567684
    [No Abstract]   [Full Text] [Related]  

  • 6. Modeling Markov switching ARMA-GARCH neural networks models and an application to forecasting stock returns.
    Bildirici M; Ersin Ö
    ScientificWorldJournal; 2014; 2014():497941. PubMed ID: 24977200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Traffic Volatility Forecasting Using an Omnibus Family GARCH Modeling Framework.
    Ou J; Huang X; Zhou Y; Zhou Z; Nie Q
    Entropy (Basel); 2022 Sep; 24(10):. PubMed ID: 37420412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid model integrating long short-term memory with adaptive genetic algorithm based on individual ranking for stock index prediction.
    Zeng X; Cai J; Liang C; Yuan C
    PLoS One; 2022; 17(8):e0272637. PubMed ID: 35976906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new hybrid PM[Formula: see text] volatility forecasting model based on EMD and machine learning algorithms.
    Wang P; Bi X; Zhang G; Yu M
    Environ Sci Pollut Res Int; 2023 Jul; 30(34):82878-82894. PubMed ID: 37335511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model.
    Sampid MG; Hasim HM; Dai H
    PLoS One; 2018; 13(6):e0198753. PubMed ID: 29933383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recurrent Neural Network GO-GARCH Model for Portfolio Selection.
    Burda M; Schroeder AK
    J Time Ser Econom; 2024 Jul; 16(2):67-81. PubMed ID: 39282630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forecasting volatility using combination across estimation windows: An application to S&P500 stock market index.
    Gaetano D
    Math Biosci Eng; 2019 Aug; 16(6):7195-7216. PubMed ID: 31698610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New practice for investors in Chinese stock market: From perspective of fractionally integrated realized GARCH model.
    Xiao M; Tao Z; Gu Z; Li Z; Chen X
    Heliyon; 2023 Mar; 9(3):e14017. PubMed ID: 36923898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stock Price Forecasting by a Deep Convolutional Generative Adversarial Network.
    Staffini A
    Front Artif Intell; 2022; 5():837596. PubMed ID: 35187477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volatility forecasts of stock index futures in China and the US-A hybrid LSTM approach.
    Chen X; Hu Y
    PLoS One; 2022; 17(7):e0271595. PubMed ID: 35901029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forecasting stock prices with long-short term memory neural network based on attention mechanism.
    Qiu J; Wang B; Zhou C
    PLoS One; 2020; 15(1):e0227222. PubMed ID: 31899770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling variations in the cedi/dollar exchange rate in Ghana: an autoregressive conditional heteroscedastic (ARCH) models.
    Techie Quaicoe M; Twenefour FB; Baah EM; Nortey EN
    Springerplus; 2015; 4():329. PubMed ID: 26180749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model-free approach to do long-term volatility forecasting and its variants.
    Wu K; Karmakar S
    Financ Innov; 2023; 9(1):59. PubMed ID: 36873387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cue the volatility spillover in the cryptocurrency markets during the COVID-19 pandemic: evidence from DCC-GARCH and wavelet analysis.
    Özdemir O
    Financ Innov; 2022; 8(1):12. PubMed ID: 35132369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An empirical investigation of investor sentiment and volatility of realty sector market in India: an application of the DCC-GARCH model.
    Pillada N; Rangasamy S
    SN Bus Econ; 2023; 3(2):55. PubMed ID: 36714500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.