These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37362793)

  • 21. Morphology-Dependent Electrocatalytic Behavior of Cobalt Chromite toward the Oxygen Evolution Reaction in Acidic and Alkaline Medium.
    Madhu R; Karmakar A; Kundu S
    Inorg Chem; 2023 Feb; 62(6):2726-2737. PubMed ID: 36715550
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bifunctionality from Synergy: CoP Nanoparticles Embedded in Amorphous CoOx Nanoplates with Heterostructures for Highly Efficient Water Electrolysis.
    Yu J; Zhong Y; Wu X; Sunarso J; Ni M; Zhou W; Shao Z
    Adv Sci (Weinh); 2018 Sep; 5(9):1800514. PubMed ID: 30250794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Ultrasonication-Assisted Cobalt Hydroxide Composite with Enhanced Electrocatalytic Activity toward Oxygen Evolution Reaction.
    Si Y; Guo C; Xie C; Xiong Z
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30304781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Free-Sustaining Three-Dimensional S235 Steel-Based Porous Electrocatalyst for Highly Efficient and Durable Oxygen Evolution.
    Han W; Kuepper K; Hou P; Akram W; Eickmeier H; Hardege J; Steinhart M; Schäfer H
    ChemSusChem; 2018 Oct; 11(20):3661-3671. PubMed ID: 30095243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-Step Synthesis of a Coral-Like Cobalt Iron Oxyhydroxide Porous Nanoarray: An Efficient Catalyst for Oxygen Evolution Reactions.
    Li Y; Zhang W; Song Z; Zheng Q; Xie F; Long E; Lin D
    Chempluschem; 2019 Nov; 84(11):1681-1687. PubMed ID: 31943872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sulfate-Decorated Amorphous-Crystalline Cobalt-Iron Oxide Nanosheets to Enhance O-O Coupling in the Oxygen Evolution Reaction.
    Wang X; Li J; Xue Q; Han X; Xing C; Liang Z; Guardia P; Zuo Y; Du R; Balcells L; Arbiol J; Llorca J; Qi X; Cabot A
    ACS Nano; 2023 Jan; 17(1):825-836. PubMed ID: 36562698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlled Assembly of Cu/Co-Oxide Beaded Nanoclusters on Thiolated Graphene Oxide Nanosheets for High-Performance Oxygen Evolution Catalysts.
    Munir A; Ul Haq T; Hussain I; Ullah I; Hussain SZ; Qurashi A; Iqbal J; Rehman A; Hussain I
    Chemistry; 2020 Sep; 26(49):11209-11219. PubMed ID: 32227539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical Synergies of Heterostructured Fe
    Kim J; Heo JN; Do JY; Chava RK; Kang M
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31635334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media.
    Hu X; Tian X; Lin YW; Wang Z
    RSC Adv; 2019 Oct; 9(54):31563-31571. PubMed ID: 35527931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tuning the Surface Electronic Structure of Amorphous NiWO
    N Dhandapani H; Madhu R; De A; Salem MA; Ramesh Babu B; Kundu S
    Inorg Chem; 2023 Jul; 62(30):11817-11828. PubMed ID: 37437220
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 1-D arrays of porous Mn
    Pham HH; Linh DC; Ngo TTA; Oanh VTK; Khuyen BX; Patil SA; Tran NHT; Park S; Im H; Bui HT; Shrestha NK
    Dalton Trans; 2023 Sep; 52(35):12185-12193. PubMed ID: 37594409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphorus-triggered synergy of phase transformation and chalcogenide vacancy migration in cobalt sulfide for an efficient oxygen evolution reaction.
    Liu S; Che C; Jing H; Zhao J; Mu X; Zhang S; Chen C; Mu S
    Nanoscale; 2020 Feb; 12(5):3129-3134. PubMed ID: 31965124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Superior and Stable Electrocatalytic Oxygen Evolution Reaction by One-Dimensional FeCoP Colloidal Nanostructures.
    Kumar L; Antil B; Kumar A; Das MR; Deka S
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5468-5477. PubMed ID: 35060716
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced Electrochemical Properties and OER Performances by Cu Substitution in NiCo
    Park H; Park BH; Choi J; Kim S; Kim T; Youn YS; Son N; Kim JH; Kang M
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32878224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CoO
    Yu Y; Gu J; Peng C; Xia Y; Tan L; Chen J; Jiang F; Chen H
    Chemistry; 2021 Jul; 27(41):10657-10665. PubMed ID: 33876453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrocatalytic Water Reduction Beginning with a {Fe(NO)
    Ke CH; Shih WC; Tsai FT; Tsai ML; Ching WM; Hsieh HH; Liaw WF
    Inorg Chem; 2018 Dec; 57(23):14715-14726. PubMed ID: 30452243
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Incorporation of Bismuth Increases the Electrocatalytic Activity of Cobalt Borates for Oxygen Evolution Reaction.
    Thomas B; Tang C; Ramírez-Hernández M; Asefa T
    Chempluschem; 2023 May; 88(5):e202300104. PubMed ID: 36872295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alkaline water-splitting reactions over Pd/Co-MOF-derived carbon obtained
    Ipadeola AK; Ozoemena KI
    RSC Adv; 2020 Apr; 10(29):17359-17368. PubMed ID: 35521459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrodeposited-film electrodes derived from a precursor dinitrosyl iron complex for electrocatalytic water splitting.
    Li WL; Chiou TW; Chen CH; Yu YJ; Chu LK; Liaw WF
    Dalton Trans; 2018 May; 47(21):7128-7134. PubMed ID: 29756619
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nickel cobalt oxide nanowires with iron incorporation realizing a promising electrocatalytic oxygen evolution reaction.
    Hao Z; Wei P; Kang H; Yang Y; Li J; Chen X; Guo D; Liu L
    Nanotechnology; 2020 Oct; 31(43):435707. PubMed ID: 32640442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.