These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 37362813)

  • 41. A review on carbon quantum dots: Synthesis, photoluminescence mechanisms and applications.
    Zhang L; Yang X; Yin Z; Sun L
    Luminescence; 2022 Oct; 37(10):1612-1638. PubMed ID: 35906748
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Upcycling Waste:
    Kundu A; Basu S; Maity B
    ACS Omega; 2023 Oct; 8(39):36449-36459. PubMed ID: 37810728
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A dual-emitting fluoroprobe fabricated by aloe leaf-based N-doped carbon quantum dots and copper nanoclusters for nitenpyram detection in waters by virtue of inner filter effect and static quenching principles.
    Wang J; Sun Y; Wang P; Sun Z; Wang Y; Gao M; Wang H; Wang X
    Anal Chim Acta; 2024 Feb; 1289():342182. PubMed ID: 38245198
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Carbon quantum dots with blue/near infrared emissions for ratiometric fluorescent lornoxicam sensing and bio-imaging.
    Wu Y; Qin D; Meng S; Zhang C; Deng B
    Mikrochim Acta; 2022 Mar; 189(4):157. PubMed ID: 35347472
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis, characterization and biocompatibility studies of carbon quantum dots from
    Tungare K; Bhori M; Racherla KS; Sawant S
    3 Biotech; 2020 Dec; 10(12):540. PubMed ID: 33240743
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Facile and Green Synthesis of Novel Fluorescent Carbon Quantum Dots and Their Silver Heterostructure: An
    Mishra S; das K; Chatterjee S; Sahoo P; Kundu S; Pal M; Bhaumik A; Ghosh CK
    ACS Omega; 2023 Feb; 8(5):4566-4577. PubMed ID: 36777585
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A rapid microwave synthesis of green-emissive carbon dots with solid-state fluorescence and pH-sensitive properties.
    Yu T; Wang H; Guo C; Zhai Y; Yang J; Yuan J
    R Soc Open Sci; 2018 Jul; 5(7):180245. PubMed ID: 30109080
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prolonged fluorescence lifetime of carbon quantum dots by combining with hydroxyapatite nanorods for bio-applications.
    Ma B; Zhang S; Liu R; Qiu J; Zhao L; Wang S; Li J; Sang Y; Jiang H; Liu H
    Nanoscale; 2017 Feb; 9(6):2162-2171. PubMed ID: 27849086
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biogenic synthesis of carbon quantum dots from garlic peel bio-waste for use as a fluorescent probe for sensing of quercetin.
    Jeevika A; Alagarsamy G; Celestina JJ
    Luminescence; 2022 Nov; 37(11):1991-2001. PubMed ID: 36063384
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assessment of biomass-derived carbon dots as highly sensitive and selective templates for the sensing of hazardous ions.
    Singh P; Arpita ; Kumar S; Kumar P; Kataria N; Bhankar V; Kumar K; Kumar R; Hsieh CT; Khoo KS
    Nanoscale; 2023 Oct; 15(40):16241-16267. PubMed ID: 37439261
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Facile Fabrication of Highly Fluorescent N-Doped Carbon Quantum Dots Using an Ultrasonic-Assisted Hydrothermal Method: Optical Properties and Cell Imaging.
    Qi C; Wang H; Yang A; Wang X; Xu J
    ACS Omega; 2021 Dec; 6(48):32904-32916. PubMed ID: 34901641
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rice Husk-Derived Carbon Quantum Dots-Based Dual-Mode Nanoprobe for Selective and Sensitive Detection of Fe
    Kundu A; Maity B; Basu S
    ACS Biomater Sci Eng; 2022 Nov; 8(11):4764-4776. PubMed ID: 36200295
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of Microwave-Assisted Fluorescence Carbon Quantum Dots Using Roasted-Chickpeas and its Applications for Sensitive and Selective Detection of Fe
    Başoğlu A; Ocak Ü; Gümrükçüoğlu A
    J Fluoresc; 2020 May; 30(3):515-526. PubMed ID: 32152829
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of N-doped carbon quantum dots from bio-waste lignin for selective irons detection and cellular imaging.
    Shi Y; Liu X; Wang M; Huang J; Jiang X; Pang J; Xu F; Zhang X
    Int J Biol Macromol; 2019 May; 128():537-545. PubMed ID: 30703418
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fluorescent Carbon Quantum Dots-Synthesis,Functionalization and Sensing Application in FoodAnalysis.
    Pan M; Xie X; Liu K; Yang J; Hong L; Wang S
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32403325
    [TBL] [Abstract][Full Text] [Related]  

  • 56.
    Sagar P; Gupta GK; Srivastava M; Srivastava A; Srivastava SK
    RSC Adv; 2021 May; 11(32):19924-19934. PubMed ID: 35479259
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbon dots: A novel trend in pharmaceutical applications.
    Dugam S; Nangare S; Patil P; Jadhav N
    Ann Pharm Fr; 2021 Jul; 79(4):335-345. PubMed ID: 33383021
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Environmentally exploitable biocide/fluorescent metal marker carbon quantum dots.
    Ahmed HB; Emam HE
    RSC Adv; 2020 Nov; 10(70):42916-42929. PubMed ID: 35514886
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Applications of carbon quantum dots (CQDs) in membrane technologies: A review.
    Zhao DL; Chung TS
    Water Res; 2018 Dec; 147():43-49. PubMed ID: 30296608
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Simple Approach for Synthesizing of Fluorescent Carbon Quantum Dots from Tofu Wastewater.
    Zhang J; Wang H; Xiao Y; Tang J; Liang C; Li F; Dong H; Xu W
    Nanoscale Res Lett; 2017 Nov; 12(1):611. PubMed ID: 29188541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.