BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 37363077)

  • 1. Catalytic Site Proximity Profiling for Functional Unification of Sequence-Diverse Radical
    Precord TW; Ramesh S; Dommaraju SR; Harris LA; Kille BL; Mitchell DA
    ACS Bio Med Chem Au; 2023 Jun; 3(3):240-251. PubMed ID: 37363077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How a Subfamily of Radical S-Adenosylmethionine Enzymes Became a Mainstay of Ribosomally Synthesized and Post-translationally Modified Peptide Discovery.
    Mendauletova A; Kostenko A; Lien Y; Latham J
    ACS Bio Med Chem Au; 2022 Feb; 2(1):53-59. PubMed ID: 37102180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a poly-cyclopropylglycine-containing peptide via bioinformatic mapping of radical S-adenosylmethionine enzymes.
    Kostenko A; Lien Y; Mendauletova A; Ngendahimana T; Novitskiy IM; Eaton SS; Latham JA
    J Biol Chem; 2022 May; 298(5):101881. PubMed ID: 35367210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural features and substrate engagement in peptide-modifying radical SAM enzymes.
    Cheek LE; Zhu W
    Arch Biochem Biophys; 2024 Jun; 756():110012. PubMed ID: 38663796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinformatic Mapping of Radical S-Adenosylmethionine-Dependent Ribosomally Synthesized and Post-Translationally Modified Peptides Identifies New Cα, Cβ, and Cγ-Linked Thioether-Containing Peptides.
    Hudson GA; Burkhart BJ; DiCaprio AJ; Schwalen CJ; Kille B; Pogorelov TV; Mitchell DA
    J Am Chem Soc; 2019 May; 141(20):8228-8238. PubMed ID: 31059252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution and Substrate Specificity of the Thioether-Forming Radical
    Precord TW; Mahanta N; Mitchell DA
    ACS Chem Biol; 2019 Sep; 14(9):1981-1989. PubMed ID: 31449382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanded Sequence Space of Radical S-Adenosylmethionine-Dependent Enzymes Involved in Post-translational Macrocyclization.
    He BB; Cheng Z; Zhong Z; Gao Y; Liu H; Li YX
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202212447. PubMed ID: 36199165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radical S-Adenosylmethionine Enzymes Involved in RiPP Biosynthesis.
    Mahanta N; Hudson GA; Mitchell DA
    Biochemistry; 2017 Oct; 56(40):5229-5244. PubMed ID: 28895719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic elucidation of the mycofactocin-biosynthetic radical
    Khaliullin B; Ayikpoe R; Tuttle M; Latham JA
    J Biol Chem; 2017 Aug; 292(31):13022-13033. PubMed ID: 28634235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Insights into Thioether Bond Formation in the Biosynthesis of Sactipeptides.
    Grove TL; Himes PM; Hwang S; Yumerefendi H; Bonanno JB; Kuhlman B; Almo SC; Bowers AA
    J Am Chem Soc; 2017 Aug; 139(34):11734-11744. PubMed ID: 28704043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current Advancements in Sactipeptide Natural Products.
    Chen Y; Wang J; Li G; Yang Y; Ding W
    Front Chem; 2021; 9():595991. PubMed ID: 34095082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accessing and exploring the unusual chemistry by radical SAM-RiPP enzymes.
    Guo Q; Morinaka BI
    Curr Opin Chem Biol; 2024 Jun; 81():102483. PubMed ID: 38917731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P450-Modified Multicyclic Cyclophane-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides.
    Liu CL; Wang ZJ; Shi J; Yan ZY; Zhang GD; Jiao RH; Tan RX; Ge HM
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202314046. PubMed ID: 38072825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinformatic mining for RiPP biosynthetic gene clusters in Bacteroidales reveals possible new subfamily architectures and novel natural products.
    Fernandez-Cantos MV; Garcia-Morena D; Yi Y; Liang L; Gómez-Vázquez E; Kuipers OP
    Front Microbiol; 2023; 14():1219272. PubMed ID: 37469430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and spectroscopic analyses of the sporulation killing factor biosynthetic enzyme SkfB, a bacterial AdoMet radical sactisynthase.
    Grell TAJ; Kincannon WM; Bruender NA; Blaesi EJ; Krebs C; Bandarian V; Drennan CL
    J Biol Chem; 2018 Nov; 293(45):17349-17361. PubMed ID: 30217813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of the sactipeptide Ruminococcin C by the human microbiome: Mechanistic insights into thioether bond formation by radical SAM enzymes.
    Balty C; Guillot A; Fradale L; Brewee C; Lefranc B; Herrero C; Sandström C; Leprince J; Berteau O; Benjdia A
    J Biol Chem; 2020 Dec; 295(49):16665-16677. PubMed ID: 32972973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radical SAM-dependent ether crosslink in daropeptide biosynthesis.
    Guo S; Wang S; Ma S; Deng Z; Ding W; Zhang Q
    Nat Commun; 2022 Apr; 13(1):2361. PubMed ID: 35487921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs).
    Benjdia A; Balty C; Berteau O
    Front Chem; 2017; 5():87. PubMed ID: 29167789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radical Approach to Enzymatic β-Thioether Bond Formation.
    Caruso A; Bushin LB; Clark KA; Martinie RJ; Seyedsayamdost MR
    J Am Chem Soc; 2019 Jan; 141(2):990-997. PubMed ID: 30521328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinformatic evidence for a widely distributed, ribosomally produced electron carrier precursor, its maturation proteins, and its nicotinoprotein redox partners.
    Haft DH
    BMC Genomics; 2011 Jan; 12():21. PubMed ID: 21223593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.