These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 37363924)
1. The role of manganese in morphogenesis and pathogenesis of the opportunistic fungal pathogen Candida albicans. Wildeman AS; Patel NK; Cormack BP; Culotta VC PLoS Pathog; 2023 Jun; 19(6):e1011478. PubMed ID: 37363924 [TBL] [Abstract][Full Text] [Related]
2. Expanded role of the Cu-sensing transcription factor Mac1p in Candida albicans. Culbertson EM; Bruno VM; Cormack BP; Culotta VC Mol Microbiol; 2020 Dec; 114(6):1006-1018. PubMed ID: 32808698 [TBL] [Abstract][Full Text] [Related]
3. Copper-only superoxide dismutase enzymes and iron starvation stress in Schatzman SS; Peterson RL; Teka M; He B; Cabelli DE; Cormack BP; Culotta VC J Biol Chem; 2020 Jan; 295(2):570-583. PubMed ID: 31806705 [TBL] [Abstract][Full Text] [Related]
4. Manganese homeostasis modulates fungal virulence and stress tolerance in Henry M; Khemiri I; Tebbji F; Abu-Helu R; Vincent AT; Sellam A mSphere; 2024 Mar; 9(3):e0080423. PubMed ID: 38380913 [TBL] [Abstract][Full Text] [Related]
5. Candida albicans adapts to host copper during infection by swapping metal cofactors for superoxide dismutase. Li CX; Gleason JE; Zhang SX; Bruno VM; Cormack BP; Culotta VC Proc Natl Acad Sci U S A; 2015 Sep; 112(38):E5336-42. PubMed ID: 26351691 [TBL] [Abstract][Full Text] [Related]
6. Candida albicans FRE8 encodes a member of the NADPH oxidase family that produces a burst of ROS during fungal morphogenesis. Rossi DCP; Gleason JE; Sanchez H; Schatzman SS; Culbertson EM; Johnson CJ; McNees CA; Coelho C; Nett JE; Andes DR; Cormack BP; Culotta VC PLoS Pathog; 2017 Dec; 13(12):e1006763. PubMed ID: 29194441 [TBL] [Abstract][Full Text] [Related]
7. Role of Calprotectin in Withholding Zinc and Copper from Candida albicans. Besold AN; Gilston BA; Radin JN; Ramsoomair C; Culbertson EM; Li CX; Cormack BP; Chazin WJ; Kehl-Fie TE; Culotta VC Infect Immun; 2018 Feb; 86(2):. PubMed ID: 29133349 [TBL] [Abstract][Full Text] [Related]
8. Candida albicans Oropharyngeal Infection Is an Exception to Iron-Based Nutritional Immunity. Solis NV; Wakade RS; Filler SG; Krysan DJ mBio; 2023 Apr; 14(2):e0009523. PubMed ID: 36912640 [TBL] [Abstract][Full Text] [Related]
9. Plasma Membrane Phosphatidylinositol-4-Phosphate Is Not Necessary for Candida albicans Viability yet Is Key for Cell Wall Integrity and Systemic Infection. Garcia-Rodas R; Labbaoui H; Orange F; Solis N; Zaragoza O; Filler SG; Bassilana M; Arkowitz RA mBio; 2021 Feb; 13(1):e0387321. PubMed ID: 35164565 [TBL] [Abstract][Full Text] [Related]
10. Ceruloplasmin as a source of Cu for a fungal pathogen. Besold AN; Shanbhag V; Petris MJ; Culotta VC J Inorg Biochem; 2021 Jun; 219():111424. PubMed ID: 33765639 [TBL] [Abstract][Full Text] [Related]
11. Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Martchenko M; Alarco AM; Harcus D; Whiteway M Mol Biol Cell; 2004 Feb; 15(2):456-67. PubMed ID: 14617819 [TBL] [Abstract][Full Text] [Related]
12. Endosomal and AP-3-dependent vacuolar trafficking routes make additive contributions to Candida albicans hyphal growth and pathogenesis. Palmer GE Eukaryot Cell; 2010 Nov; 9(11):1755-65. PubMed ID: 20870878 [TBL] [Abstract][Full Text] [Related]
15. Exploiting the vulnerable active site of a copper-only superoxide dismutase to disrupt fungal pathogenesis. Robinett NG; Culbertson EM; Peterson RL; Sanchez H; Andes DR; Nett JE; Culotta VC J Biol Chem; 2019 Feb; 294(8):2700-2713. PubMed ID: 30593499 [TBL] [Abstract][Full Text] [Related]
16. Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence. Liu NN; Uppuluri P; Broggi A; Besold A; Ryman K; Kambara H; Solis N; Lorenz V; Qi W; Acosta-Zaldívar M; Emami SN; Bao B; An D; Bonilla FA; Sola-Visner M; Filler SG; Luo HR; Engström Y; Ljungdahl PO; Culotta VC; Zanoni I; Lopez-Ribot JL; Köhler JR PLoS Pathog; 2018 Jul; 14(7):e1007076. PubMed ID: 30059535 [TBL] [Abstract][Full Text] [Related]
17. Cell wall associated proteins involved in filamentation with impact on the virulence of Candida albicans. Arita GS; Faria DR; Capoci IRG; Kioshima ES; Bonfim-Mendonça PS; Svidzinski TIE Microbiol Res; 2022 May; 258():126996. PubMed ID: 35247799 [TBL] [Abstract][Full Text] [Related]
18. The PP2A regulatory subunits, Cdc55 and Rts1, play distinct roles in Candida albicans' growth, morphogenesis, and virulence. Han Q; Pan C; Wang Y; Wang N; Wang Y; Sang J Fungal Genet Biol; 2019 Oct; 131():103240. PubMed ID: 31185286 [TBL] [Abstract][Full Text] [Related]
19. A Fungal Transcription Regulator of Vacuolar Function Modulates Candida albicans Interactions with Host Epithelial Cells. Reuter-Weissenberger P; Meir J; Pérez JC mBio; 2021 Dec; 12(6):e0302021. PubMed ID: 34781731 [TBL] [Abstract][Full Text] [Related]
20. The fungal-specific subunit i/j of F1FO-ATP synthase stimulates the pathogenicity of Candida albicans independent of oxidative phosphorylation. Zhao Y; Lyu Y; Zhang Y; Li S; Zhang Y; Liu Y; Tang C; Zhang Z; Li D; Zhang H Med Mycol; 2021 Jul; 59(7):639-652. PubMed ID: 33269392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]