BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37364023)

  • 1. Probing the Conformational Preference to β-Strand during Peptide Self-Assembly.
    Ganesan V; Priya MH
    J Phys Chem B; 2023 Jul; 127(26):5821-5836. PubMed ID: 37364023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic perspective on the dock-lock growth mechanism of amyloid fibrils.
    O'Brien EP; Okamoto Y; Straub JE; Brooks BR; Thirumalai D
    J Phys Chem B; 2009 Oct; 113(43):14421-30. PubMed ID: 19813700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleation and Growth of Amyloid Fibrils.
    Jalali S; Zhang R; Haataja MP; Dias CL
    J Phys Chem B; 2023 Nov; 127(45):9759-9770. PubMed ID: 37934627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How well does Poisson-Boltzmann implicit solvent agree with explicit solvent? A quantitative analysis.
    Tan C; Yang L; Luo R
    J Phys Chem B; 2006 Sep; 110(37):18680-7. PubMed ID: 16970499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational preferences of proline oligopeptides.
    Kang YK; Jhon JS; Park HS
    J Phys Chem B; 2006 Sep; 110(35):17645-55. PubMed ID: 16942110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Assembly of Model Amphiphilic Peptides in Nonaqueous Solvents: Changing the Driving Force for Aggregation Does Not Change the Fibril Structure.
    Del Giudice A; Rüter A; Pavel NV; Galantini L; Olsson U
    Langmuir; 2020 Jul; 36(29):8451-8460. PubMed ID: 32597180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free energy profile and mechanism of self-assembly of peptide amphiphiles based on a collective assembly coordinate.
    Yu T; Schatz GC
    J Phys Chem B; 2013 Aug; 117(30):9004-13. PubMed ID: 23822638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations and free energy analyses on the dimer formation of an amyloidogenic heptapeptide from human beta2-microglobulin: implication for the protofibril structure.
    Lei H; Wu C; Wang Z; Duan Y
    J Mol Biol; 2006 Mar; 356(4):1049-63. PubMed ID: 16403526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly-(L-alanine) expansions form core beta-sheets that nucleate amyloid assembly.
    Shinchuk LM; Sharma D; Blondelle SE; Reixach N; Inouye H; Kirschner DA
    Proteins; 2005 Nov; 61(3):579-89. PubMed ID: 16114037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol induced the formation of β-sheet and amyloid-like fibrils by surfactant-like peptide A6K.
    Chen Y; Tang C; Xing Z; Zhang J; Qiu F
    J Pept Sci; 2013 Nov; 19(11):708-16. PubMed ID: 24105725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of large Aβ16-22 aggregates at atomic details and potential of mean force associated to peptide unbinding and fragmentation events.
    Iorio A; Timr Š; Chiodo L; Derreumaux P; Sterpone F
    Proteins; 2023 Aug; 91(8):1152-1162. PubMed ID: 37139594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monomeric Polyglutamine Structures That Evolve into Fibrils.
    Punihaole D; Jakubek RS; Workman RJ; Marbella LE; Campbell P; Madura JD; Asher SA
    J Phys Chem B; 2017 Jun; 121(24):5953-5967. PubMed ID: 28531354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of helix formation in small peptides of varying length in vacuo, in implicit solvent, and in explicit solvent.
    Wang X; Deng B; Sun Z
    J Mol Model; 2018 Dec; 25(1):3. PubMed ID: 30542771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing backbone solvation effects in the conformational propensities of amino acid residues in unfolded peptides.
    Ilawe NV; Raeber AE; Schweitzer-Stenner R; Toal SE; Wong BM
    Phys Chem Chem Phys; 2015 Oct; 17(38):24917-24. PubMed ID: 26343224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Familial Mutations on the Interconversion of α-Helix to β-Sheet Structures in an Amyloid-Forming Peptide: Insight from Umbrella Sampling Simulations.
    Mudedla SK; Murugan NA; Ågren H
    ACS Chem Neurosci; 2019 Mar; 10(3):1347-1354. PubMed ID: 30586502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyproline II helix is the preferred conformation for unfolded polyalanine in water.
    Mezei M; Fleming PJ; Srinivasan R; Rose GD
    Proteins; 2004 May; 55(3):502-7. PubMed ID: 15103614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acidic pH Promotes Refolding and Macroscopic Assembly of Amyloid β (16-22) Peptides at the Air-Water Interface.
    Lu H; Bellucci L; Sun S; Qi D; Rosa M; Berger R; Corni S; Bonn M
    J Phys Chem Lett; 2022 Jul; 13(29):6674-6679. PubMed ID: 35839425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The alpha-to-beta conformational transition of Alzheimer's Abeta-(1-42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of beta conformation seeding.
    Tomaselli S; Esposito V; Vangone P; van Nuland NA; Bonvin AM; Guerrini R; Tancredi T; Temussi PA; Picone D
    Chembiochem; 2006 Feb; 7(2):257-67. PubMed ID: 16444756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free Energy Landscape for Alpha-Helix to Beta-Sheet Interconversion in Small Amyloid Forming Peptide under Nanoconfinement.
    Mudedla SK; Murugan NA; Agren H
    J Phys Chem B; 2018 Oct; 122(42):9654-9664. PubMed ID: 30253649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.