These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37364023)

  • 41. Diproline templates as folding nuclei in designed peptides. Conformational analysis of synthetic peptide helices containing amino terminal Pro-Pro segments.
    Rai R; Aravinda S; Kanagarajadurai K; Raghothama S; Shamala N; Balaram P
    J Am Chem Soc; 2006 Jun; 128(24):7916-28. PubMed ID: 16771506
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Conformational structure, dynamics, and solvation energies of small alanine peptides in water and carbon tetrachloride.
    Xiang TX; Anderson BD
    J Pharm Sci; 2006 Jun; 95(6):1269-87. PubMed ID: 16625657
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural regulation of a peptide-conjugated graft copolymer: a simple model for amyloid formation.
    Koga T; Taguchi K; Kobuke Y; Kinoshita T; Higuchi M
    Chemistry; 2003 Mar; 9(5):1146-56. PubMed ID: 12596151
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A simple model for polyproline II structure in unfolded states of alanine-based peptides.
    Pappu RV; Rose GD
    Protein Sci; 2002 Oct; 11(10):2437-55. PubMed ID: 12237465
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of a Hybrid-Resolution Force Field for Peptide Self-Assembly Simulations: Optimizing Peptide-Peptide and Peptide-Solvent Interactions.
    Cai X; Han W
    J Chem Inf Model; 2022 Jun; 62(11):2744-2760. PubMed ID: 35561002
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dynamics of locking of peptides onto growing amyloid fibrils.
    Reddy G; Straub JE; Thirumalai D
    Proc Natl Acad Sci U S A; 2009 Jul; 106(29):11948-53. PubMed ID: 19581575
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-assembly of a peptide with a tandem repeat of the Aβ16-22 sequence linked by a β turn-promoting dipeptide sequence.
    Sivakama Sundari C; Bikshapathy E; Nagaraj R
    Biopolymers; 2015 Nov; 104(6):790-803. PubMed ID: 26473431
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Early aggregation mechanism of Aβ
    Rahman MU; Song K; Da LT; Chen HF
    Int J Biol Macromol; 2022 Apr; 204():606-616. PubMed ID: 35134456
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular Insights into the Self-Assembly of a Full-Length hIAPP Trimer: β-Protofibril Formed by β-Hairpin Lateral or Longitudinal Association.
    Lin R; Tang G; Gao Z; Lei J; Ma B; Mo Y
    J Phys Chem B; 2023 Jun; 127(23):5241-5248. PubMed ID: 37262327
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conformational ensemble and polymorphism of the all-atom Alzheimer's Aβ(37-42) amyloid peptide oligomers.
    Nguyen PH; Derreumaux P
    J Phys Chem B; 2013 May; 117(19):5831-40. PubMed ID: 23581814
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Low molecular weight oligomers of amyloid peptides display beta-barrel conformations: a replica exchange molecular dynamics study in explicit solvent.
    De Simone A; Derreumaux P
    J Chem Phys; 2010 Apr; 132(16):165103. PubMed ID: 20441311
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dry amyloid fibril assembly in a yeast prion peptide is mediated by long-lived structures containing water wires.
    Reddy G; Straub JE; Thirumalai D
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21459-64. PubMed ID: 21098298
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanistic insight into E22Q-mutation-induced antiparallel-to-parallel β-sheet transition of Aβ
    Li X; Lei J; Qi R; Xie L; Wei G
    Phys Chem Chem Phys; 2019 Jul; 21(28):15686-15694. PubMed ID: 31271401
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metal Binding to Amyloid-β
    Mutter ST; Turner M; Deeth RJ; Platts JA
    ACS Chem Neurosci; 2018 Nov; 9(11):2795-2806. PubMed ID: 29898363
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assembly dynamics of two-beta sheets revealed by molecular dynamics simulations.
    Xu W; Ping J; Li W; Mu Y
    J Chem Phys; 2009 Apr; 130(16):164709. PubMed ID: 19405618
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Amyloid-forming peptides from beta2-microglobulin-Insights into the mechanism of fibril formation in vitro.
    Jones S; Manning J; Kad NM; Radford SE
    J Mol Biol; 2003 Jan; 325(2):249-57. PubMed ID: 12488093
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Occurrence of Biased Conformations as Precursors of Assembly States in Fibril Elongation of Amyloid-β Fibril Variants: An
    Frigori RB; Barroso da Silva FL; Carvalho PPD; Alves NA
    J Phys Chem B; 2020 Apr; 124(14):2798-2805. PubMed ID: 32204595
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of Phe in the formation of well-ordered oligomers of amyloidogenic hexapeptide (NFGAIL) observed in molecular dynamics simulations with explicit solvent.
    Wu C; Lei H; Duan Y
    Biophys J; 2005 Apr; 88(4):2897-906. PubMed ID: 15653723
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Supramolecular Antiparallel β-Sheet Formation by Tetrapeptides Based on Amyloid Sequence.
    Misra S; Singh P; Mahata RN; Brandão P; Roy S; Mahapatra AK; Nanda J
    J Phys Chem B; 2021 May; 125(17):4274-4285. PubMed ID: 33886330
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Conformational changes of Aβ (1-42) monomers in different solvents.
    Lee M; Chang HJ; Park JY; Shin J; Park JW; Choi JW; Kim JI; Na S
    J Mol Graph Model; 2016 Apr; 65():8-14. PubMed ID: 26896721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.