These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 37364101)
1. Promoted hydrogen and acetaldehyde production from alcohol dehydrogenation enabled by electrochemical hydrogen pumps. Wu Y; Zhu X; Du S; Huang G; Zhou B; Lu Y; Li Y; Jiang SP; Tao L; Wang S Proc Natl Acad Sci U S A; 2023 Jul; 120(27):e2300625120. PubMed ID: 37364101 [TBL] [Abstract][Full Text] [Related]
2. Electrocatalysis Boosts the Methanol Thermocatalytic Dehydrogenation for High-Purity H Wu Y; Huang G; Du S; Li M; Liu Q; Zhou Y; Jiang Z; Zhu X; Wang Y; Wang T; Tao L; Wang S J Am Chem Soc; 2024 Apr; 146(14):9657-9664. PubMed ID: 38557037 [TBL] [Abstract][Full Text] [Related]
3. Effect of Calcination Temperature on Mg-Al Layered Double Hydroxides (LDH) as Promising Catalysts in Oxidative Dehydrogenation of Ethanol to Acetaldehyde. Pinthong P; Praserthdam P; Jongsomjit B J Oleo Sci; 2019 Jan; 68(1):95-102. PubMed ID: 30542011 [TBL] [Abstract][Full Text] [Related]
4. Efficient Low-temperature Hydrogen Production by Electrochemical-assisted Methanol Steam Reforming. Liu Q; Du S; Liu T; Gong L; Wu Y; Lin J; Yang P; Huang G; Li M; Wu Y; Zhou Y; Li Y; Tao L; Wang S Angew Chem Int Ed Engl; 2024 Feb; 63(7):e202315157. PubMed ID: 38143245 [TBL] [Abstract][Full Text] [Related]
5. Integrating Hydrogen Production with Aqueous Selective Semi-Dehydrogenation of Tetrahydroisoquinolines over a Ni Huang C; Huang Y; Liu C; Yu Y; Zhang B Angew Chem Int Ed Engl; 2019 Aug; 58(35):12014-12017. PubMed ID: 31268216 [TBL] [Abstract][Full Text] [Related]
6. Electrocatalytic Hydrogenation of 5-Hydroxymethylfurfural Promoted by a Ru Ji K; Xu M; Xu SM; Wang Y; Ge R; Hu X; Sun X; Duan H Angew Chem Int Ed Engl; 2022 Sep; 61(37):e202209849. PubMed ID: 35876073 [TBL] [Abstract][Full Text] [Related]
7. Amorphous Ni-Mo-B-O Bifunctional Electrocatalyst for Simultaneous Production of Hydrogen and Value-added Chemicals. Hao X; Cai T; Ma J; She G; Zhang H; Wang W; Yu J; Mu L; Shi W Chempluschem; 2023 Aug; 88(8):e202300285. PubMed ID: 37485790 [TBL] [Abstract][Full Text] [Related]
8. Computational insights into the zeolite-supported gold nanocluster-catalyzed ethanol dehydrogenation to acetaldehyde. Zhang Y; Tang K; Bao X Phys Chem Chem Phys; 2024 Mar; 26(12):9593-9600. PubMed ID: 38465799 [TBL] [Abstract][Full Text] [Related]
9. Oxidative Dehydrogenation of Ethanol over Vanadium- and Molybdenum-modified Mg-Al Mixed Oxide Derived from Hydrotalcite. Pinthong P; Praserthdam P; Jongsomjit B J Oleo Sci; 2019 Jul; 68(7):679-687. PubMed ID: 31178468 [TBL] [Abstract][Full Text] [Related]
11. Heterostructured Ru/Ni(OH) Ao W; Cheng C; Ren H; Fan Z; Yin P; Qin Q; Chen ZN; Dai L ACS Appl Mater Interfaces; 2022 Oct; 14(39):45042-45050. PubMed ID: 36149741 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical Conversion of Alcohols into Acidic Commodities on Nickel Sulfide Nanoparticles. Li J; Tian X; Wang X; Zhang T; Spadaro MC; Arbiol J; Li L; Zuo Y; Cabot A Inorg Chem; 2022 Aug; 61(34):13433-13441. PubMed ID: 35983854 [TBL] [Abstract][Full Text] [Related]
13. Coupling Glucose Dehydrogenation with CO Ding G; Su J; Zhang C; Tang K; Yang L; Lin H ChemSusChem; 2018 Jul; 11(13):2029-2034. PubMed ID: 29740977 [TBL] [Abstract][Full Text] [Related]
14. Interfacial Electronic Coupling of NC@WO Yang Y; Shao X; Zhou S; Yan P; Isimjan TT; Yang X ChemSusChem; 2021 Jul; 14(14):2992-3000. PubMed ID: 34076948 [TBL] [Abstract][Full Text] [Related]
15. One Nanometer PtIr Nanowires as High-Efficiency Bifunctional Catalysts for Electrosynthesis of Ethanol into High Value-Added Multicarbon Compound Coupled with Hydrogen Production. Yin K; Chao Y; Lv F; Tao L; Zhang W; Lu S; Li M; Zhang Q; Gu L; Li H; Guo S J Am Chem Soc; 2021 Jul; 143(29):10822-10827. PubMed ID: 34279921 [TBL] [Abstract][Full Text] [Related]
16. Selective reduction of CO to acetaldehyde with CuAg electrocatalysts. Wang L; Higgins DC; Ji Y; Morales-Guio CG; Chan K; Hahn C; Jaramillo TF Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12572-12575. PubMed ID: 31980521 [TBL] [Abstract][Full Text] [Related]
17. Defect Engineering of MoS Zhang Y; Kuwahara Y; Mori K; Yamashita H Chem Asian J; 2019 Jan; 14(2):278-285. PubMed ID: 30507026 [TBL] [Abstract][Full Text] [Related]
18. Robust and Highly Efficient Electrochemical Hydrogen Production from Hydrazine-Assisted Water Electrolysis Enabled by the Metal-Support Interaction of Ru/C Composites. Wang W; Qian Q; Li Y; Zhu Y; Feng Y; Cheng M; Zhang H; Zhang Y; Zhang G ACS Appl Mater Interfaces; 2023 Jun; 15(22):26852-26862. PubMed ID: 37225429 [TBL] [Abstract][Full Text] [Related]
19. Air-Promoted Light-Driven Hydrogen Production from Bioethanol over Core/Shell Cr Wang Z; Chen Y; Sheng B; Li J; Yao L; Yu Y; Song J; Yu T; Li Y; Pan H; Wang P; Wang X; Zhu L; Zhou B Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202400011. PubMed ID: 38409577 [TBL] [Abstract][Full Text] [Related]
20. Ambient sunlight-driven photothermal methanol dehydrogenation for syngas production with 32.9 % solar-to-hydrogen conversion efficiency. Bai X; Yuan D; Li Y; Song H; Lu Y; San X; Lu J; Fu G; Wang S; Ye J iScience; 2021 Feb; 24(2):102056. PubMed ID: 33537660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]