These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37364123)

  • 1. Formulation of the cosmic ray-driven electron-induced reaction mechanism for quantitative understanding of global ozone depletion.
    Lu QB
    Proc Natl Acad Sci U S A; 2023 Jul; 120(27):e2303048120. PubMed ID: 37364123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of cosmic rays on atmospheric chlorofluorocarbon dissociation and ozone depletion.
    Lu QB; Sanche L
    Phys Rev Lett; 2001 Aug; 87(7):078501. PubMed ID: 11497927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between cosmic rays and ozone depletion.
    Lu QB
    Phys Rev Lett; 2009 Mar; 102(11):118501. PubMed ID: 19392251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in biologically active ultraviolet radiation reaching the Earth's surface.
    Madronich S; McKenzie RL; Björn LO; Caldwell MM
    J Photochem Photobiol B; 1998 Oct; 46(1-3):5-19. PubMed ID: 9894350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change.
    Wilson SR; Solomon KR; Tang X
    Photochem Photobiol Sci; 2007 Mar; 6(3):301-10. PubMed ID: 17344964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Historical trend of ozone-depleting substances and hydrofluorocarbon concentrations during 2004-2020 derived from satellite observations and estimates for global emissions.
    Chen A; Chen D; Hu X; Harth CM; Young D; Mühle J; Krummel PB; O'Doherty S; Weiss RF; Prinn RG; Fang X
    Environ Pollut; 2023 Jan; 316(Pt 1):120570. PubMed ID: 36328288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1,2-Dichlorohexafluoro-cyclobutane (1,2-c-C4F6Cl2, R-316c) a potent ozone depleting substance and greenhouse gas: atmospheric loss processes, lifetimes, and ozone depletion and global warming potentials for the (E) and (Z) stereoisomers.
    Papadimitriou VC; McGillen MR; Smith SC; Jubb AM; Portmann RW; Hall BD; Fleming EL; Jackman CH; Burkholder JB
    J Phys Chem A; 2013 Oct; 117(43):11049-65. PubMed ID: 24079521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of column ozone on future ODSs and GHGs in the variability of 500-ensemble members.
    Akiyoshi H; Kadowaki M; Yamashita Y; Nagatomo T
    Sci Rep; 2023 Jan; 13(1):320. PubMed ID: 36609500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in biologically-active ultraviolet radiation reaching the Earth's surface.
    McKenzie RL; Aucamp PJ; Bais AF; Björn LO; Ilyas M
    Photochem Photobiol Sci; 2007 Mar; 6(3):218-31. PubMed ID: 17344959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fundamental differences between Arctic and Antarctic ozone depletion.
    Solomon S; Haskins J; Ivy DJ; Min F
    Proc Natl Acad Sci U S A; 2014 Apr; 111(17):6220-5. PubMed ID: 24733920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate of elemental mercury in the Arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the Arctic.
    Skov H; Christensen JH; Goodsite ME; Heidam NZ; Jensen B; Wåhlin P; Geernaert G
    Environ Sci Technol; 2004 Apr; 38(8):2373-82. PubMed ID: 15116843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of cosmic rays on stratospheric chlorine chemistry and ozone depletion.
    Müller R
    Phys Rev Lett; 2003 Aug; 91(5):058502. PubMed ID: 12906642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trends in the vertical distribution of ozone.
    Randel WJ; Stolarski RS; Cunnold DM; Logan JA; Newchurch MJ; Zawodny JM
    Science; 1999 Sep; 285(5434):1689-92. PubMed ID: 10480999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation and Impacts of Surface and Blowing Snow Sources of Arctic Bromine Activation Within WRF-Chem 4.1.1.
    Marelle L; Thomas JL; Ahmed S; Tuite K; Stutz J; Dommergue A; Simpson WR; Frey MM; Baladima F
    J Adv Model Earth Syst; 2021 Aug; 13(8):e2020MS002391. PubMed ID: 34434492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Montreal Protocol is delaying the occurrence of the first ice-free Arctic summer.
    England MR; Polvani LM
    Proc Natl Acad Sci U S A; 2023 May; 120(22):e2211432120. PubMed ID: 37216559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atmospheric chemistry of HFE-7000 (CF(3)CF (2)CF (2)OCH (3)) and 2,2,3,3,4,4,4-heptafluoro-1-butanol (CF (3)CF (2)CF (2)CH (2)OH): kinetic rate coefficients and temperature dependence of reactions with chlorine atoms.
    Díaz-de-Mera Y; Aranda A; Bravo I; Rodríguez D; Rodríguez A; Moreno E
    Environ Sci Pollut Res Int; 2008 Oct; 15(7):584-91. PubMed ID: 18712424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct detection of atmospheric atomic bromine leading to mercury and ozone depletion.
    Wang S; McNamara SM; Moore CW; Obrist D; Steffen A; Shepson PB; Staebler RM; Raso ARW; Pratt KA
    Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14479-14484. PubMed ID: 31253702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol.
    Chipperfield MP; Dhomse SS; Feng W; McKenzie RL; Velders GJM; Pyle JA
    Nat Commun; 2015 May; 6():7233. PubMed ID: 26011106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does cosmic-ray-induced heterogeneous chemistry influence stratospheric polar ozone loss?
    Müller R; Grooss JU
    Phys Rev Lett; 2009 Nov; 103(22):228501. PubMed ID: 20366127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice.
    Moore CW; Obrist D; Steffen A; Staebler RM; Douglas TA; Richter A; Nghiem SV
    Nature; 2014 Feb; 506(7486):81-4. PubMed ID: 24429521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.