These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 37364130)
21. Endosomal escape: A bottleneck for LNP-mediated therapeutics. Chatterjee S; Kon E; Sharma P; Peer D Proc Natl Acad Sci U S A; 2024 Mar; 121(11):e2307800120. PubMed ID: 38437552 [TBL] [Abstract][Full Text] [Related]
22. Lipid nanoparticles (LNPs) for in vivo RNA delivery and their breakthrough technology for future applications. Jeong M; Lee Y; Park J; Jung H; Lee H Adv Drug Deliv Rev; 2023 Sep; 200():114990. PubMed ID: 37423563 [TBL] [Abstract][Full Text] [Related]
24. Intracellular trafficking kinetics of nucleic acid escape from lipid nanoparticles via fluorescence imaging. M Bailey-Hytholt C; Ulinski G; Dugas J; Haines M; Lazebnik M; Piepenhagen P; E Zarraga I; Bandekar A Curr Pharm Biotechnol; 2023 Apr; ():. PubMed ID: 37016519 [TBL] [Abstract][Full Text] [Related]
25. Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: real-time visualization of transient membrane destabilization without endosomal lysis. ur Rehman Z; Hoekstra D; Zuhorn IS ACS Nano; 2013 May; 7(5):3767-77. PubMed ID: 23597090 [TBL] [Abstract][Full Text] [Related]
26. Lipid Nanoparticles Optimized for Targeting and Release of Nucleic Acid. Jia Y; Wang X; Li L; Li F; Zhang J; Liang XJ Adv Mater; 2024 Jan; 36(4):e2305300. PubMed ID: 37547955 [TBL] [Abstract][Full Text] [Related]
27. A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery. Munson MJ; O'Driscoll G; Silva AM; Lázaro-Ibáñez E; Gallud A; Wilson JT; Collén A; Esbjörner EK; Sabirsh A Commun Biol; 2021 Feb; 4(1):211. PubMed ID: 33594247 [TBL] [Abstract][Full Text] [Related]
28. Targeting Recycling Endosomes to Potentiate mRNA Lipid Nanoparticles. Shin J; Douglas CJ; Zhang S; Seath CP; Bao H Nano Lett; 2024 May; 24(17):5104-5109. PubMed ID: 38640421 [TBL] [Abstract][Full Text] [Related]
29. Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA). Álvarez-Benedicto E; Farbiak L; Márquez Ramírez M; Wang X; Johnson LT; Mian O; Guerrero ED; Siegwart DJ Biomater Sci; 2022 Jan; 10(2):549-559. PubMed ID: 34904974 [TBL] [Abstract][Full Text] [Related]
30. Which Lipid Nanoparticle (LNP) Designs Work? A Simple Kinetic Model Linking LNP Chemical Structure to In Vivo Delivery Performance. Roh EH; Sullivan MO; Epps TH ACS Appl Mater Interfaces; 2024 Mar; 16(11):13399-13410. PubMed ID: 38466900 [TBL] [Abstract][Full Text] [Related]
31. Lipid nanoparticle formulations for optimal RNA-based topical delivery to murine airways. Tam A; Kulkarni J; An K; Li L; Dorscheid DR; Singhera GK; Bernatchez P; Reid G; Chan K; Witzigmann D; Cullis PR; Sin DD; Lim CJ Eur J Pharm Sci; 2022 Sep; 176():106234. PubMed ID: 35688311 [TBL] [Abstract][Full Text] [Related]
32. Neutralization of negative charges of siRNA results in improved safety and efficient gene silencing activity of lipid nanoparticles loaded with high levels of siRNA. Sato Y; Matsui H; Sato R; Harashima H J Control Release; 2018 Aug; 284():179-187. PubMed ID: 29936118 [TBL] [Abstract][Full Text] [Related]
33. The development of an in vitro assay to screen lipid based nanoparticles for siRNA delivery. Zhang Y; Arrington L; Boardman D; Davis J; Xu Y; DiFelice K; Stirdivant S; Wang W; Budzik B; Bawiec J; Deng J; Beutner G; Seifried D; Stanton M; Gindy M; Leone A J Control Release; 2014 Jan; 174():7-14. PubMed ID: 24240015 [TBL] [Abstract][Full Text] [Related]
34. Enhancing RNA-lipid nanoparticle delivery: Organ- and cell-specificity and barcoding strategies. Wei PS; Thota N; John G; Chang E; Lee S; Wang Y; Ma Z; Tsai YH; Mei KC J Control Release; 2024 Nov; 375():366-388. PubMed ID: 39179112 [TBL] [Abstract][Full Text] [Related]
35. Mild Innate Immune Activation Overrides Efficient Nanoparticle-Mediated RNA Delivery. Lokugamage MP; Gan Z; Zurla C; Levin J; Islam FZ; Kalathoor S; Sato M; Sago CD; Santangelo PJ; Dahlman JE Adv Mater; 2020 Jan; 32(1):e1904905. PubMed ID: 31743531 [TBL] [Abstract][Full Text] [Related]
36. Cytosolic protein delivery using pH-responsive, charge-reversible lipid nanoparticles. Hirai Y; Hirose H; Imanishi M; Asai T; Futaki S Sci Rep; 2021 Oct; 11(1):19896. PubMed ID: 34615928 [TBL] [Abstract][Full Text] [Related]
37. Engineered ionizable lipid siRNA conjugates enhance endosomal escape but induce toxicity in vivo. Biscans A; Ly S; McHugh N; Cooper DA; Khvorova A J Control Release; 2022 Sep; 349():831-843. PubMed ID: 35917865 [TBL] [Abstract][Full Text] [Related]
38. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery. Kimura N; Maeki M; Sato Y; Ishida A; Tani H; Harashima H; Tokeshi M ACS Appl Mater Interfaces; 2020 Jul; 12(30):34011-34020. PubMed ID: 32667806 [TBL] [Abstract][Full Text] [Related]
39. Unsaturated, Trialkyl Ionizable Lipids are Versatile Lipid-Nanoparticle Components for Therapeutic and Vaccine Applications. Lam K; Leung A; Martin A; Wood M; Schreiner P; Palmer L; Daly O; Zhao W; McClintock K; Heyes J Adv Mater; 2023 Apr; 35(15):e2209624. PubMed ID: 36680477 [TBL] [Abstract][Full Text] [Related]
40. Lipid Nanoparticle-Associated Inflammation is Triggered by Sensing of Endosomal Damage: Engineering Endosomal Escape Without Side Effects. Omo-Lamai S; Wang Y; Patel MN; Essien EO; Shen M; Majumdar A; Espy C; Wu J; Channer B; Tobin M; Murali S; Papp TE; Maheshwari R; Wang L; Chase LS; Zamora ME; Arral ML; Marcos-Contreras OA; Myerson JW; Hunter CA; Tsourkas A; Muzykantov V; Brodsky I; Shin S; Whitehead KA; Gaskill P; Discher D; Parhiz H; Brenner JS bioRxiv; 2024 Apr; ():. PubMed ID: 38659905 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]