These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37364270)

  • 1. Amplified Plasmonic Forces from DNA Origami-Scaffolded Single Dyes in Nanogaps.
    Rocchetti S; Ohmann A; Chikkaraddy R; Kang G; Keyser UF; Baumberg JJ
    Nano Lett; 2023 Jul; 23(13):5959-5966. PubMed ID: 37364270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami.
    Chikkaraddy R; Turek VA; Kongsuwan N; Benz F; Carnegie C; van de Goor T; de Nijs B; Demetriadou A; Hess O; Keyser UF; Baumberg JJ
    Nano Lett; 2018 Jan; 18(1):405-411. PubMed ID: 29166033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Geometry of Nanoparticle-on-Mirror Plasmonic Nanocavities Impacts Surface-Enhanced Raman Scattering Backgrounds.
    Wang Z; Zhou W; Yang M; Yang Y; Hu J; Qin C; Zhang G; Liu S; Chen R; Xiao L
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic.
    Zhou C; Duan X; Liu N
    Acc Chem Res; 2017 Dec; 50(12):2906-2914. PubMed ID: 28953361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding quantum emitters in plasmonic nanocavities with conformal transformation: Purcell enhancement and forces.
    Pacheco-Peña V; Navarro-Cía M
    Nanoscale; 2018 Jul; 10(28):13607-13616. PubMed ID: 29978869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Versatile DNA Origami-Based Plasmonic Nanoantenna for Label-Free Single-Molecule Surface-Enhanced Raman Spectroscopy.
    Tapio K; Mostafa A; Kanehira Y; Suma A; Dutta A; Bald I
    ACS Nano; 2021 Apr; 15(4):7065-7077. PubMed ID: 33872513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA Origami Nanoantennas for Fluorescence Enhancement.
    Glembockyte V; Grabenhorst L; Trofymchuk K; Tinnefeld P
    Acc Chem Res; 2021 Sep; 54(17):3338-3348. PubMed ID: 34435769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking Optical Welding through Groove Modes in Plasmonic Nanocavities.
    Mertens J; Demetriadou A; Bowman RW; Benz F; Kleemann ME; Tserkezis C; Shi Y; Yang HY; Hess O; Aizpurua J; Baumberg JJ
    Nano Lett; 2016 Sep; 16(9):5605-11. PubMed ID: 27529641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking Nanoelectrochemistry Using Individual Plasmonic Nanocavities.
    Di Martino G; Turek VA; Lombardi A; Szabó I; de Nijs B; Kuhn A; Rosta E; Baumberg JJ
    Nano Lett; 2017 Aug; 17(8):4840-4845. PubMed ID: 28686457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling Optically Driven Atomic Migration Using Crystal-Facet Control in Plasmonic Nanocavities.
    Xomalis A; Chikkaraddy R; Oksenberg E; Shlesinger I; Huang J; Garnett EC; Koenderink AF; Baumberg JJ
    ACS Nano; 2020 Aug; 14(8):10562-10568. PubMed ID: 32687323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full Control of Plasmonic Nanocavities Using Gold Decahedra-on-Mirror Constructs with Monodisperse Facets.
    Hu S; Elliott E; Sánchez-Iglesias A; Huang J; Guo C; Hou Y; Kamp M; Goerlitzer ESA; Bedingfield K; de Nijs B; Peng J; Demetriadou A; Liz-Marzán LM; Baumberg JJ
    Adv Sci (Weinh); 2023 Apr; 10(11):e2207178. PubMed ID: 36737852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas.
    Simoncelli S; Roller EM; Urban P; Schreiber R; Turberfield AJ; Liedl T; Lohmüller T
    ACS Nano; 2016 Nov; 10(11):9809-9815. PubMed ID: 27649370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant optomechanical spring effect in plasmonic nano- and picocavities probed by surface-enhanced Raman scattering.
    Jakob LA; Deacon WM; Zhang Y; de Nijs B; Pavlenko E; Hu S; Carnegie C; Neuman T; Esteban R; Aizpurua J; Baumberg JJ
    Nat Commun; 2023 Jun; 14(1):3291. PubMed ID: 37280203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Generation of Two-Photon Excited Phosphorescence from Molecules in Plasmonic Nanocavities.
    Ojambati OS; Chikkaraddy R; Deacon WM; Huang J; Wright D; Baumberg JJ
    Nano Lett; 2020 Jun; 20(6):4653-4658. PubMed ID: 32422048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays.
    Tran TT; Wang D; Xu ZQ; Yang A; Toth M; Odom TW; Aharonovich I
    Nano Lett; 2017 Apr; 17(4):2634-2639. PubMed ID: 28318263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong Light-Matter Interactions in Chiral Plasmonic-Excitonic Systems Assembled on DNA Origami.
    Zhu J; Wu F; Han Z; Shang Y; Liu F; Yu H; Yu L; Li N; Ding B
    Nano Lett; 2021 Apr; 21(8):3573-3580. PubMed ID: 33830773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inelastic Light Scattering in the Vicinity of a Single-Atom Quantum Point Contact in a Plasmonic Picocavity.
    Liu S; Bonafe FP; Appel H; Rubio A; Wolf M; Kumagai T
    ACS Nano; 2023 Jun; 17(11):10172-10180. PubMed ID: 37183801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.
    Hoang TB; Akselrod GM; Mikkelsen MH
    Nano Lett; 2016 Jan; 16(1):270-5. PubMed ID: 26606001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.