BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37364395)

  • 1. Lower extremity coordination strategies to mitigate dynamic knee valgus during landing in males and females.
    Dennis JD; Choe KH; Montgomery MM; Lynn SK; Crews BM; Pamukoff DN
    J Biomech; 2023 Jul; 156():111689. PubMed ID: 37364395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lower extremity and trunk sagittal plane coordination strategies and kinetic distribution during landing in males and females.
    Dennis JD; Choe KH; Montgomery MM; Lynn SK; Crews BM; Pamukoff DN
    J Sports Sci; 2024 Jan; 42(2):169-178. PubMed ID: 38423997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of a subsequent jump on the knee abduction angle during the early landing phase.
    Ishida T; Koshino Y; Yamanaka M; Ueno R; Taniguchi S; Samukawa M; Saito H; Matsumoto H; Aoki Y; Tohyama H
    BMC Musculoskelet Disord; 2018 Oct; 19(1):379. PubMed ID: 30342498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex difference in effect of ankle landing biomechanics in sagittal plane on knee valgus moment during single-leg landing.
    Lee J; Shin CS
    Sci Rep; 2022 Nov; 12(1):18821. PubMed ID: 36335259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peak Lower Extremity Landing Kinematics in Dancers and Nondancers.
    Hansberger BL; Acocello S; Slater LV; Hart JM; Ambegaonkar JP
    J Athl Train; 2018 Apr; 53(4):379-385. PubMed ID: 29528687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sex-based differences in landing mechanics vary between the drop vertical jump and stop jump.
    Peebles AT; Dickerson LC; Renner KE; Queen RM
    J Biomech; 2020 May; 105():109818. PubMed ID: 32423549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gender differences in frontal and sagittal plane biomechanics during drop landings.
    Kernozek TW; Torry MR; VAN Hoof H; Cowley H; Tanner S
    Med Sci Sports Exerc; 2005 Jun; 37(6):1003-12; discussion 1013. PubMed ID: 15947726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lower extremity energy absorption and biomechanics during landing, part II: frontal-plane energy analyses and interplanar relationships.
    Norcross MF; Lewek MD; Padua DA; Shultz SJ; Weinhold PS; Blackburn JT
    J Athl Train; 2013; 48(6):757-63. PubMed ID: 23944381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timing of lower extremity frontal plane motion differs between female and male athletes during a landing task.
    Joseph MF; Rahl M; Sheehan J; MacDougall B; Horn E; Denegar CR; Trojian TH; Anderson JM; Kraemer WJ
    Am J Sports Med; 2011 Jul; 39(7):1517-21. PubMed ID: 21383083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tibial plateau geometry influences lower extremity biomechanics during landing.
    Shultz SJ; Schmitz RJ
    Am J Sports Med; 2012 Sep; 40(9):2029-36. PubMed ID: 22837428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and kinematic differences between first and second landings of a drop vertical jump task: implications for injury risk assessments.
    Bates NA; Ford KR; Myer GD; Hewett TE
    Clin Biomech (Bristol, Avon); 2013 Apr; 28(4):459-66. PubMed ID: 23562293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower extremity energy absorption and biomechanics during landing, part I: sagittal-plane energy absorption analyses.
    Norcross MF; Lewek MD; Padua DA; Shultz SJ; Weinhold PS; Blackburn JT
    J Athl Train; 2013; 48(6):748-56. PubMed ID: 23944382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knee Biomechanical Deficits During a Single-Leg Landing Task Are Addressed With Neuromuscular Training in Anterior Cruciate Ligament-Reconstructed Athletes.
    Nagelli CV; Di Stasi S; Wordeman SC; Chen A; Tatarski R; Hoffman J; Hewett TE
    Clin J Sport Med; 2021 Nov; 31(6):e347-e353. PubMed ID: 31842056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Landing biomechanics in participants with different static lower extremity alignment profiles.
    Nguyen AD; Shultz SJ; Schmitz RJ
    J Athl Train; 2015 May; 50(5):498-507. PubMed ID: 25658815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of Proximal and Distal Factors With Lower Limb Kinematics During a Classical Ballet Jump.
    Cabral AM; Martinez AF; Leme V; Luz BC; Serrão FV
    J Sport Rehabil; 2023 Feb; 32(2):170-176. PubMed ID: 36049748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex and Limb Differences in Lower Extremity Alignment and Kinematics during Drop Vertical Jumps.
    Chun Y; Bailey JP; Kim J; Lee SC; Lee SY
    Int J Environ Res Public Health; 2021 Apr; 18(7):. PubMed ID: 33916746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical Differences of Multidirectional Jump Landings Among Female Basketball and Soccer Players.
    Taylor JB; Ford KR; Schmitz RJ; Ross SE; Ackerman TA; Shultz SJ
    J Strength Cond Res; 2017 Nov; 31(11):3034-3045. PubMed ID: 29065078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Side-hops challenge knee control in the frontal and transversal plane more than hops for distance or height among ACL-reconstructed individuals.
    Markström JL; Tengman E; Häger CK
    Sports Biomech; 2023 Jan; 22(1):142-159. PubMed ID: 33586624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The association between lower extremity energy absorption and biomechanical factors related to anterior cruciate ligament injury.
    Norcross MF; Blackburn JT; Goerger BM; Padua DA
    Clin Biomech (Bristol, Avon); 2010 Dec; 25(10):1031-6. PubMed ID: 20797812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing Whole-Body Kinematics During Single-Leg Jump Landing to Reduce Peak Abduction/Adduction and Internal Rotation Knee Moments: Implications for Anterior Cruciate Ligament Injury Risk.
    Gupta D; Reinbolt JA; Donnelly CJ
    J Appl Biomech; 2021 Oct; 37(5):432-439. PubMed ID: 34504045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.