These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 37364653)
1. Continuous lactate-driven dark fermentation of restaurant food waste: Process characterization and new insights on transient feast/famine perturbations. Regueira-Marcos L; Muñoz R; García-Depraect O Bioresour Technol; 2023 Oct; 385():129385. PubMed ID: 37364653 [TBL] [Abstract][Full Text] [Related]
2. Unlocking the high-rate continuous performance of fermentative hydrogen bioproduction from fruit and vegetable residues by modulating hydraulic retention time. Martínez-Mendoza LJ; García-Depraect O; Muñoz R Bioresour Technol; 2023 Apr; 373():128716. PubMed ID: 36764366 [TBL] [Abstract][Full Text] [Related]
3. The hydraulic retention time influences the abundance of Enterobacter, Clostridium and Lactobacillus during the hydrogen production from food waste. Santiago SG; Trably E; Latrille E; Buitrón G; Moreno-Andrade I Lett Appl Microbiol; 2019 Sep; 69(3):138-147. PubMed ID: 31219171 [TBL] [Abstract][Full Text] [Related]
4. Continuous dark and photo biohydrogen production in a baffled bioreactor and electrons distribution analysis. Li Y; Zhang Z; Jiang D; Jing Y; Lu C; Zhang H; Zhang Q Bioresour Technol; 2021 Oct; 337():125440. PubMed ID: 34166932 [TBL] [Abstract][Full Text] [Related]
5. HRT dependent performance and bacterial community population of granular hydrogen-producing mixed cultures fed with galactose. Kumar G; Sivagurunathan P; Park JH; Park JH; Park HD; Yoon JJ; Kim SH Bioresour Technol; 2016 Apr; 206():188-194. PubMed ID: 26859326 [TBL] [Abstract][Full Text] [Related]
6. New insights into microbial interactions and putative competitive mechanisms during the hydrogen production from tequila vinasses. Toledo-Cervantes A; Méndez-Acosta HO; Arreola-Vargas J; Gabriel-Barajas JE; Aguilar-Mota MN; Snell-Castro R Appl Microbiol Biotechnol; 2022 Oct; 106(19-20):6861-6876. PubMed ID: 36071291 [TBL] [Abstract][Full Text] [Related]
7. Selecting fermentation products for food waste valorisation with HRT and OLR as the key operational parameters. De Groof V; Coma M; Arnot T; Leak DJ; Lanham AB Waste Manag; 2021 May; 127():80-89. PubMed ID: 33932853 [TBL] [Abstract][Full Text] [Related]
8. Lactic acid fermentation of food waste in a semicontinuous SBR system: influence of the influent composition and hydraulic retention time. Pau S; Tan LC; Arriaga S; Lens PNL Environ Technol; 2024 Jun; 45(15):2993-3003. PubMed ID: 37272689 [TBL] [Abstract][Full Text] [Related]
9. Biohydrogen production by lactate-driven dark fermentation of real organic wastes derived from solid waste treatment plants. Martínez-Fraile C; Muñoz R; Teresa Simorte M; Sanz I; García-Depraect O Bioresour Technol; 2024 Jul; 403():130846. PubMed ID: 38754561 [TBL] [Abstract][Full Text] [Related]
10. Biohydrogen and biomethane production from food waste using a two-stage dynamic membrane bioreactor (DMBR) system. Jung JH; Sim YB; Ko J; Park SY; Kim GB; Kim SH Bioresour Technol; 2022 May; 352():127094. PubMed ID: 35367325 [TBL] [Abstract][Full Text] [Related]
11. Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate. Han W; Hu Y; Li S; Li F; Tang J Bioresour Technol; 2016 Oct; 218():589-94. PubMed ID: 27416509 [TBL] [Abstract][Full Text] [Related]
12. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems. Han W; Yan Y; Shi Y; Gu J; Tang J; Zhao H Sci Rep; 2016 Dec; 6():38395. PubMed ID: 27910937 [TBL] [Abstract][Full Text] [Related]
13. Dark-fermentative hydrogen production from synthetic lignocellulose hydrolysate by a mixed bacterial culture: The relationship between hydraulic retention time and pH conditions. Zagrodnik R; Duber A; Seifert K Bioresour Technol; 2022 Aug; 358():127309. PubMed ID: 35569715 [TBL] [Abstract][Full Text] [Related]
14. Effect of hydraulic retention time on suppression of methanogens during a continuous biohydrogen production process using molasses wastewater. Yun JH; Cho KS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jan; 52(1):37-44. PubMed ID: 27610651 [TBL] [Abstract][Full Text] [Related]
15. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH. Cheah YK; Vidal-Antich C; Dosta J; Mata-Álvarez J Environ Sci Pollut Res Int; 2019 Dec; 26(35):35509-35522. PubMed ID: 31111388 [TBL] [Abstract][Full Text] [Related]
16. An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas. Moretto G; Russo I; Bolzonella D; Pavan P; Majone M; Valentino F Water Res; 2020 Mar; 170():115371. PubMed ID: 31835138 [TBL] [Abstract][Full Text] [Related]
17. Oyster shells improve anaerobic dark fermentation performances of food waste: Hydrogen production, acidification performances, and microbial community characteristics. Shi Z; Zhang L; Yuan H; Li X; Chang Y; Zuo X Bioresour Technol; 2021 Sep; 335():125268. PubMed ID: 34020157 [TBL] [Abstract][Full Text] [Related]
18. Garden and food waste co-fermentation for biohydrogen and biomethane production in a two-step hyperthermophilic-mesophilic process. Abreu AA; Tavares F; Alves MM; Cavaleiro AJ; Pereira MA Bioresour Technol; 2019 Apr; 278():180-186. PubMed ID: 30703635 [TBL] [Abstract][Full Text] [Related]
19. High-rate mesophilic hydrogen production from food waste using hybrid immobilized microbiome. Jung JH; Sim YB; Baik JH; Park JH; Kim SH Bioresour Technol; 2021 Jan; 320(Pt A):124279. PubMed ID: 33152682 [TBL] [Abstract][Full Text] [Related]
20. High-rate biohydrogen production from xylose using a dynamic membrane bioreactor. Baik JH; Jung JH; Sim YB; Park JH; Kim SM; Yang J; Kim SH Bioresour Technol; 2022 Jan; 344(Pt A):126205. PubMed ID: 34715337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]