These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37364788)

  • 1. Mechanics and properties of fish fin rays in nonlinear regimes of large deformations.
    Das S; Hannard F; Barthelat F
    Acta Biomater; 2023 Sep; 167():171-181. PubMed ID: 37364788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gradients of properties increase the morphing and stiffening performance of bioinspired synthetic fin rays.
    Das S; Kunjam P; Ebeling JF; Barthelat F
    Bioinspir Biomim; 2024 May; 19(4):. PubMed ID: 38722377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmentations in fins enable large morphing amplitudes combined with high flexural stiffness for fish-inspired robotic materials.
    Hannard F; Mirkhalaf M; Ameri A; Barthelat F
    Sci Robot; 2021 Aug; 6(57):. PubMed ID: 34380757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional morphology of the fin rays of teleost fishes.
    Flammang BE; Alben S; Madden PG; Lauder GV
    J Morphol; 2013 Sep; 274(9):1044-59. PubMed ID: 23720195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in flexural stiffness of the lepidotrichia within and among the soft fins of yellow perch under different preservation techniques.
    Taft NK; Taft BN; Henck H; Mehner T
    J Morphol; 2018 Aug; 279(8):1045-1057. PubMed ID: 29885081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and mechanical implications of the pectoral fin skeleton in the Longnose Skate (Chondrichthyes, Batoidea).
    Huang W; Hongjamrassilp W; Jung JY; Hastings PA; Lubarda VA; McKittrick J
    Acta Biomater; 2017 Mar; 51():393-407. PubMed ID: 28069513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding Fish Linear Acceleration Using an Undulatory Biorobotic Model with Soft Fluidic Elastomer Actuated Morphing Median Fins.
    Wen L; Ren Z; Di Santo V; Hu K; Yuan T; Wang T; Lauder GV
    Soft Robot; 2018 Aug; 5(4):375-388. PubMed ID: 29634444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between pectoral fin ray stiffness and swimming behavior in Labridae: insights into design, performance and ecology.
    Aiello BR; Hardy AR; Cherian C; Olsen AM; Ahn SE; Hale ME; Westneat MW
    J Exp Biol; 2018 Jan; 221(Pt 1):. PubMed ID: 29162638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Water to Land Transition Submerged: Multifunctional Design of Pectoral Fins for Use in Swimming and in Association with Underwater Substrate.
    Hale ME; Galdston S; Arnold BW; Song C
    Integr Comp Biol; 2022 Oct; 62(4):908-921. PubMed ID: 35652788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of stiffness distribution and spanwise deformation on the dynamics of a ray-supported caudal fin.
    Zhu Q; Bi X
    Bioinspir Biomim; 2017 Mar; 12(2):026011. PubMed ID: 28140357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of biorobotic models of highly deformable fins for studying the mechanics and control of fin forces in fishes.
    Tangorra J; Phelan C; Esposito C; Lauder G
    Integr Comp Biol; 2011 Jul; 51(1):176-89. PubMed ID: 21653544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Platform development and gliding optimization of a robotic flying fish with morphing pectoral fins.
    Chen D; Wu Z; Dong H; Meng Y; Yu J
    Bioinspir Biomim; 2023 Apr; 18(3):. PubMed ID: 37075757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of pectoral fin ray morphology and its impact on fin ray flexural stiffness in labriform swimmers.
    Aiello BR; Hardy AR; Cherian C; Olsen AM; Orsbon CP; Hale ME; Westneat MW
    J Morphol; 2018 Aug; 279(8):1031-1044. PubMed ID: 29693259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal chordwise stiffness profiles of self-propelled flapping fins.
    Kancharala AK; Philen MK
    Bioinspir Biomim; 2016 Sep; 11(5):056016. PubMed ID: 27627992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Musculoskeletal morphology and regionalization within the dorsal and anal fins of bluegill sunfish (Lepomis macrochirus).
    Chadwell BA; Ashley-Ross MA
    J Morphol; 2012 Apr; 273(4):405-22. PubMed ID: 22052716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid-structure interaction modeling on a 3D ray-strengthened caudal fin.
    Shi G; Xiao Q; Zhu Q; Liao W
    Bioinspir Biomim; 2019 Apr; 14(3):036012. PubMed ID: 30870830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of supporting elements in the dorsal fin of percid fishes.
    Weickhardt AF; Feilich KL; Lauder GV
    J Morphol; 2017 Dec; 278(12):1716-1725. PubMed ID: 28914460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nonlinear flexural response of a whole teleost fish: Contribution of scales and skin.
    Szewciw L; Zhu D; Barthelat F
    J Mech Behav Biomed Mater; 2017 Dec; 76():97-103. PubMed ID: 28645510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive robotic models of propulsion by the bodies and caudal fins of fish.
    Lauder GV; Flammang B; Alben S
    Integr Comp Biol; 2012 Nov; 52(5):576-87. PubMed ID: 22740513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexibility is a hidden axis of biomechanical diversity in fishes.
    Jimenez YE; Lucas KN; Long JH; Tytell ED
    J Exp Biol; 2023 Apr; 226(Suppl_1):. PubMed ID: 37086034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.