BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37364831)

  • 1. Elevated pCO
    Ren Y; Jia Z; Liu Y; Liang C; Zhang X; Xu D; Ye N
    Sci Total Environ; 2023 Oct; 895():164985. PubMed ID: 37364831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana.
    Bergami E; Pugnalini S; Vannuccini ML; Manfra L; Faleri C; Savorelli F; Dawson KA; Corsi I
    Aquat Toxicol; 2017 Aug; 189():159-169. PubMed ID: 28644993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-dependent negative effects of polystyrene nanoplastics on Oryzias melastigma under ocean acidification conditions.
    Chen Y; Wang X; Sui Q; Chang G; Sun X; Zhu L; Chen B; Qu K; Xia B
    Sci Total Environ; 2023 Mar; 865():161248. PubMed ID: 36587669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ocean acidification increases the toxic effects of TiO
    Xia B; Sui Q; Sun X; Han Q; Chen B; Zhu L; Qu K
    J Hazard Mater; 2018 Mar; 346():1-9. PubMed ID: 29232611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Under pressure: Nanoplastics as a further stressor for sub-Antarctic pteropods already tackling ocean acidification.
    Manno C; Peck LV; Corsi I; Bergami E
    Mar Pollut Bull; 2022 Jan; 174():113176. PubMed ID: 34890891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation effects of CO
    Dong F; Wang P; Qian W; Tang X; Zhu X; Wang Z; Cai Z; Wang J
    Environ Pollut; 2020 Apr; 259():113850. PubMed ID: 31887602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eco-corona formation lessens the toxic effects of polystyrene nanoplastics towards marine microalgae Chlorella sp.
    Natarajan L; Omer S; Jetly N; Jenifer MA; Chandrasekaran N; Suraishkumar GK; Mukherjee A
    Environ Res; 2020 Sep; 188():109842. PubMed ID: 32846636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental salinity modulates the effects of elevated CO2 levels on juvenile hard-shell clams, Mercenaria mercenaria.
    Dickinson GH; Matoo OB; Tourek RT; Sokolova IM; Beniash E
    J Exp Biol; 2013 Jul; 216(Pt 14):2607-18. PubMed ID: 23531824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum?
    Sendra M; Staffieri E; Yeste MP; Moreno-Garrido I; Gatica JM; Corsi I; Blasco J
    Environ Pollut; 2019 Jun; 249():610-619. PubMed ID: 30933758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative ecotoxicity of polystyrene nanoparticles in natural seawater and reconstituted seawater using the rotifer Brachionus plicatilis.
    Manfra L; Rotini A; Bergami E; Grassi G; Faleri C; Corsi I
    Ecotoxicol Environ Saf; 2017 Nov; 145():557-563. PubMed ID: 28800530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insensitivities of a subtropical productive coastal plankton community and trophic transfer to ocean acidification: Results from a microcosm study.
    Wang T; Jin P; Wells ML; Trick CG; Gao K
    Mar Pollut Bull; 2019 Apr; 141():462-471. PubMed ID: 30955757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ocean acidification increases copper accumulation and exacerbates copper toxicity in Amphioctopus fangsiao (Mollusca: Cephalopoda): A potential threat to seafood safety.
    Zheng J; Li Q; Zheng X
    Sci Total Environ; 2023 Sep; 891():164473. PubMed ID: 37244623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO
    Shi D; Hong H; Su X; Liao L; Chang S; Lin W
    J Phycol; 2019 Jun; 55(3):521-533. PubMed ID: 30849184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pCO
    Xiao Z; Cao L; Liu J; Cui W; Dou S
    Sci Total Environ; 2023 Feb; 858(Pt 3):160040. PubMed ID: 36347280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc toxicity alters the photosynthetic response of red alga Pyropia yezoensis to ocean acidification.
    Ma J; Wang W; Liu X; Wang Z; Gao G; Wu H; Li X; Xu J
    Environ Sci Pollut Res Int; 2020 Jan; 27(3):3202-3212. PubMed ID: 31838674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ocean acidification on dopamine-mediated behavioral responses of a coral reef damselfish.
    Hamilton TJ; Tresguerres M; Kwan GT; Szaskiewicz J; Franczak B; Cyronak T; Andersson AJ; Kline DI
    Sci Total Environ; 2023 Jun; 877():162860. PubMed ID: 36931527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ocean acidification alleviated nickel toxicity to a marine copepod under multigenerational scenarios but at a cost with a loss of transcriptome plasticity during recovery.
    Zhao F; Huang Y; Wei H; Wang M
    Sci Total Environ; 2024 Sep; 942():173585. PubMed ID: 38810735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The MicroClimate Screen - A microscale climate exposure system for assessing the effect of CO
    Xie L; Macken A; Johnsen B; Norli M; Segtnan Skogan OA; Tollefsen KE
    Mar Environ Res; 2022 Jul; 179():105670. PubMed ID: 35728490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Regulation mechanism of ocean acidification on key physiological processes of microalgae and the effect of environmental factors: A review].
    Xue YH; Liu ZM; Wang H; Zhao J
    Ying Yong Sheng Tai Xue Bao; 2020 Nov; 31(11):3969-3978. PubMed ID: 33300748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of ocean acidification on the early development and escape behavior of marine medaka (Oryzias melastigma).
    Wang X; Song L; Chen Y; Ran H; Song J
    Mar Environ Res; 2017 Oct; 131():10-18. PubMed ID: 28923289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.