These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37364834)

  • 1. Nanobubble aeration enhanced wastewater treatment and bioenergy generation in constructed wetlands coupled with microbial fuel cells.
    Lyu T; Wu Y; Zhang Y; Fan W; Wu S; Mortimer RJG; Pan G
    Sci Total Environ; 2023 Oct; 895():165131. PubMed ID: 37364834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced phosphorus removal in intermittently aerated constructed wetlands filled with various construction wastes.
    Shi X; Fan J; Zhang J; Shen Y
    Environ Sci Pollut Res Int; 2017 Oct; 24(28):22524-22534. PubMed ID: 28804808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass transfer of nanobubble aeration and its effect on biofilm growth: Microbial activity and structural properties.
    Xiao W; Xu G
    Sci Total Environ; 2020 Feb; 703():134976. PubMed ID: 31757539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of aeration, plants, electrodes, and pollutant loads on treatment performance of constructed wetlands: A comprehensive study with septage.
    Saeed T; Al-Muyeed A; Yadav AK; Miah MJ; Hasan MR; Zaman T; Hasan M; Ahmed T
    Sci Total Environ; 2023 Sep; 892():164558. PubMed ID: 37270017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of a recently emerged technology: Constructed wetland--Microbial fuel cells.
    Doherty L; Zhao Y; Zhao X; Hu Y; Hao X; Xu L; Liu R
    Water Res; 2015 Nov; 85():38-45. PubMed ID: 26295937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Interaction Effects of Aeration and Plant on the Purification Performance of Horizontal Subsurface Flow Constructed Wetland.
    Chen X; Zhong F; Chen Y; Wu J; Cheng S
    Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery.
    Oon YL; Ong SA; Ho LN; Wong YS; Dahalan FA; Oon YS; Lehl HK; Thung WE; Nordin N
    Bioresour Technol; 2017 Jan; 224():265-275. PubMed ID: 27864130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the removal efficiency of nitrogen and organics in vertical-flow constructed wetlands: the correlation of substrate, aeration and microbial activity.
    Xu W; Yang B; Wang H; Wang S; Jiao K; Zhang C; Li F; Wang H
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):21683-21693. PubMed ID: 36274076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced long-term organics and nitrogen removal and associated microbial community in intermittently aerated subsurface flow constructed wetlands.
    Fan J; Zhang J; Guo W; Liang S; Wu H
    Bioresour Technol; 2016 Aug; 214():871-875. PubMed ID: 27246456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance evaluation of three constructed wetland-microbial fuel cell systems: wastewater treatment efficiency and electricity generation potential.
    Htet Htet H; Dolphen R; Jirasereeamornkul K; Thiravetyan P
    Environ Sci Pollut Res Int; 2023 Sep; 30(42):96163-96180. PubMed ID: 37566335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic media-based two-stage traditional and electrode-integrated tidal flow wetlands to treat landfill leachate: Influence of aeration strategy and plants.
    Saeed T; Zaman T; Miah MJ; Yadav AK; Majed N
    J Environ Manage; 2023 Mar; 330():117253. PubMed ID: 36621313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The intensified constructed wetlands are promising for treatment of ammonia stripped effluent: Nitrogen transformations and removal pathways.
    Lyu T; He K; Dong R; Wu S
    Environ Pollut; 2018 May; 236():273-282. PubMed ID: 29414349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Influence of Biochar Application on Growth and Antioxidative Responses of Macrophytes in Subsurface Flow Constructed Wetlands].
    Huang L; Chen YC; Zhao YQ; Xiao GQ; Yang ZM
    Huan Jing Ke Xue; 2018 Jun; 39(6):2904-2910. PubMed ID: 29965649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Operating a two-stage microbial fuel cell-constructed wetland for fuller wastewater treatment and more efficient electricity generation.
    Doherty L; Zhao Y
    Water Sci Technol; 2015; 72(3):421-8. PubMed ID: 26204074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Ornamental Plant Density and Mineral/Plastic Media on the Removal of Domestic Wastewater Pollutants by Home Wetlands Technology.
    Sandoval-Herazo LC; Alvarado-Lassman A; López-Méndez MC; Martínez-Sibaja A; Aguilar-Lasserre AA; Zamora-Castro S; Marín-Muñiz JL
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33198195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of constructed wetland integrated with microbial fuel cell for domestic wastewater treatment and to facilitate power generation.
    Yadav A; Jadhav DA; Ghangrekar MM; Mitra A
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):51117-51129. PubMed ID: 34826088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of nitrogen removal and energy recovery from low C/N ratio sewage by multi-electrode electrochemical technology and tidal flow via siphon aeration.
    Zhang K; Yang S; Luo H; Chen J; An X; Chen W; Zhang X
    Chemosphere; 2022 Jul; 299():134376. PubMed ID: 35358555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation from biofiltration unit to hybrid constructed wetland-microbial fuel cell: Improvement of wastewater treatment performance and energy recovery.
    Teoh TP; Koo CJ; Ho LN; Wong YS; Lutpi NA; Tan SM; Yap KL; Ong SA
    Environ Sci Pollut Res Int; 2023 May; 30(21):59877-59890. PubMed ID: 37016256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of typical antibiotics in constructed wetlands integrated with microbial fuel cells: Roles of plant and circuit operation mode.
    Wen H; Zhu H; Yan B; Xu Y; Shutes B
    Chemosphere; 2020 Jul; 250():126252. PubMed ID: 32097812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of different macrophytes in the decontamination of and electricity generation from swine wastewater via an integrated constructed wetland-microbial fuel cell process.
    Liu F; Sun L; Wan J; Shen L; Yu Y; Hu L; Zhou Y
    J Environ Sci (China); 2020 Mar; 89():252-263. PubMed ID: 31892397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.