These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 37365171)
21. An Earth-Abundant Catalyst-Based Seawater Photoelectrolysis System with 17.9% Solar-to-Hydrogen Efficiency. Hsu SH; Miao J; Zhang L; Gao J; Wang H; Tao H; Hung SF; Vasileff A; Qiao SZ; Liu B Adv Mater; 2018 May; 30(18):e1707261. PubMed ID: 29569283 [TBL] [Abstract][Full Text] [Related]
22. Materials Design and System Innovation for Direct and Indirect Seawater Electrolysis. He W; Li X; Tang C; Zhou S; Lu X; Li W; Li X; Zeng X; Dong P; Zhang Y; Zhang Q ACS Nano; 2023 Nov; 17(22):22227-22239. PubMed ID: 37965727 [TBL] [Abstract][Full Text] [Related]
23. Electro-conversion of carbon dioxide (CO Zhang Z; Song Y; Zheng S; Zhen G; Lu X; Kobayashi T; Xu K; Bakonyi P Bioresour Technol; 2019 May; 279():339-349. PubMed ID: 30737066 [TBL] [Abstract][Full Text] [Related]
24. Design Strategy of Corrosion-Resistant Electrodes for Seawater Electrolysis. Zhao L; Li X; Yu J; Zhou W Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049003 [TBL] [Abstract][Full Text] [Related]
25. Co-electrolysis of steam and CO2 in full-ceramic symmetrical SOECs: a strategy for avoiding the use of hydrogen as a safe gas. Torrell M; García-Rodríguez S; Morata A; Penelas G; Tarancón A Faraday Discuss; 2015; 182():241-55. PubMed ID: 26204959 [TBL] [Abstract][Full Text] [Related]
26. Surface Chemistry of Perovskite-Type Electrodes During High Temperature CO Opitz AK; Nenning A; Rameshan C; Kubicek M; Götsch T; Blume R; Hävecker M; Knop-Gericke A; Rupprechter G; Klötzer B; Fleig J ACS Appl Mater Interfaces; 2017 Oct; 9(41):35847-35860. PubMed ID: 28933825 [TBL] [Abstract][Full Text] [Related]
27. A review of high temperature co-electrolysis of H Zheng Y; Wang J; Yu B; Zhang W; Chen J; Qiao J; Zhang J Chem Soc Rev; 2017 Mar; 46(5):1427-1463. PubMed ID: 28165079 [TBL] [Abstract][Full Text] [Related]
28. Continuous carbon capture in an electrochemical solid-electrolyte reactor. Zhu P; Wu ZY; Elgazzar A; Dong C; Wi TU; Chen FY; Xia Y; Feng Y; Shakouri M; Kim JYT; Fang Z; Hatton TA; Wang H Nature; 2023 Jun; 618(7967):959-966. PubMed ID: 37380692 [TBL] [Abstract][Full Text] [Related]
29. Gas Phase Electrolysis of Carbon Dioxide to Carbon Monoxide Using Nickel Nitride as the Carbon Enrichment Catalyst. Hou P; Wang X; Wang Z; Kang P ACS Appl Mater Interfaces; 2018 Nov; 10(44):38024-38031. PubMed ID: 30354056 [TBL] [Abstract][Full Text] [Related]
30. Fuel Production from Seawater and Fuel Cells Using Seawater. Fukuzumi S; Lee YM; Nam W ChemSusChem; 2017 Nov; 10(22):4264-4276. PubMed ID: 28914497 [TBL] [Abstract][Full Text] [Related]
32. Removal of organic carbon and nitrogen in a membraneless flow-through microbial electrolysis cell. Hussain A; Lebrun FM; Tartakovsky B Enzyme Microb Technol; 2017 Jul; 102():41-48. PubMed ID: 28465059 [TBL] [Abstract][Full Text] [Related]
33. Study of Pyridine-Mediated Electrochemical Reduction of CO2 to Methanol at High CO2 Pressure. Rybchenko SI; Touhami D; Wadhawan JD; Haywood SK ChemSusChem; 2016 Jul; 9(13):1660-9. PubMed ID: 27253886 [TBL] [Abstract][Full Text] [Related]
34. Electrochemical reduction of carbon dioxide to formate via nano-prism assembled CuO microspheres. Li D; Huang L; Liu T; Liu J; Zhen L; Wu J; Feng Y Chemosphere; 2019 Dec; 237():124527. PubMed ID: 31549649 [TBL] [Abstract][Full Text] [Related]
35. Nitrogen doping and titanium vacancies synergistically promote CO Qu D; Peng X; Mi Y; Bao H; Zhao S; Liu X; Luo J Nanoscale; 2020 Aug; 12(33):17191-17195. PubMed ID: 32567632 [TBL] [Abstract][Full Text] [Related]
36. Energy-Efficient Electrosynthesis of High Value-Added Active Chlorine Coupled with H Zhu W; Wei Z; Ma Y; Ren M; Fu X; Li M; Zhang C; Wang J; Guo S Angew Chem Int Ed Engl; 2024 Apr; 63(15):e202319798. PubMed ID: 38353370 [TBL] [Abstract][Full Text] [Related]
37. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion. Costentin C; Robert M; Savéant JM Acc Chem Res; 2015 Dec; 48(12):2996-3006. PubMed ID: 26559053 [TBL] [Abstract][Full Text] [Related]
38. High-yield electrochemical production of formaldehyde from CO2 and seawater. Nakata K; Ozaki T; Terashima C; Fujishima A; Einaga Y Angew Chem Int Ed Engl; 2014 Jan; 53(3):871-4. PubMed ID: 24281847 [TBL] [Abstract][Full Text] [Related]
39. Natural gas anodes for aluminium electrolysis in molten fluorides. Haarberg GM; Khalaghi B; Mokkelbost T Faraday Discuss; 2016 Aug; 190():71-84. PubMed ID: 27210046 [TBL] [Abstract][Full Text] [Related]
40. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Singh MR; Clark EL; Bell AT Phys Chem Chem Phys; 2015 Jul; 17(29):18924-36. PubMed ID: 26103939 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]