BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 37365564)

  • 1. Differentially expressed chaperone genes reveal a stress response required for unidirectional regeneration in the basal chordate Ciona.
    Jeffery WR; Li B; Ng M; Li L; Gorički Š; Ma L
    BMC Biol; 2023 Jun; 21(1):148. PubMed ID: 37365564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genomewide analysis of genes for the heat shock protein 70 chaperone system in the ascidian Ciona intestinalis.
    Wada S; Hamada M; Satoh N
    Cell Stress Chaperones; 2006; 11(1):23-33. PubMed ID: 16572726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apoptosis is a generator of Wnt-dependent regeneration and homeostatic cell renewal in the ascidian Ciona.
    Jeffery WR; Gorički Š
    Biol Open; 2021 Apr; 10(4):. PubMed ID: 33913473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distal Regeneration Involves the Age Dependent Activity of Branchial Sac Stem Cells in the Ascidian
    Jeffery WR
    Regeneration (Oxf); 2015 Feb; 2(1):1-18. PubMed ID: 25893097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the chordate regeneration blastema: Differential gene expression and conserved role of notch signaling during siphon regeneration in the ascidian Ciona.
    Hamada M; Goricki S; Byerly MS; Satoh N; Jeffery WR
    Dev Biol; 2015 Sep; 405(2):304-15. PubMed ID: 26206613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress response in the ascidian Ciona intestinalis: transcriptional profiling of genes for the heat shock protein 70 chaperone system under heat stress and endoplasmic reticulum stress.
    Fujikawa T; Munakata T; Kondo S; Satoh N; Wada S
    Cell Stress Chaperones; 2010 Mar; 15(2):193-204. PubMed ID: 19629754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progenitor targeting by adult stem cells in Ciona homeostasis, injury, and regeneration.
    Jeffery WR
    Dev Biol; 2019 Apr; 448(2):279-290. PubMed ID: 30205080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regeneration, Stem Cells, and Aging in the Tunicate Ciona: Insights from the Oral Siphon.
    Jeffery WR
    Int Rev Cell Mol Biol; 2015; 319():255-82. PubMed ID: 26404471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. No chromosomal clustering of housekeeping genes in the marine chordate Ciona intestinalis.
    Shoguchi E; Fujie M; Hamada M
    Mar Genomics; 2011 Sep; 4(3):151-7. PubMed ID: 21867966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic (+ 3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis.
    Thomas DJ; Nava GM; Cai SY; Boyer JL; Hernández-Zavala A; Gaskins HR
    Toxicol Sci; 2010 Jan; 113(1):70-6. PubMed ID: 19833739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial deployment of the cardiogenic gene regulatory network in the basal chordate, Ciona intestinalis.
    Woznica A; Haeussler M; Starobinska E; Jemmett J; Li Y; Mount D; Davidson B
    Dev Biol; 2012 Aug; 368(1):127-39. PubMed ID: 22595514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression profiles in Ciona intestinalis stigmatal cells: insight into formation of the ascidian branchial fissures.
    Shimazaki A; Sakai A; Ogasawara M
    Dev Dyn; 2006 Feb; 235(2):562-9. PubMed ID: 16342199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of the cis-regulatory region of a heat-shock protein 70 gene to heat-inducible gene expression in the ascidian Ciona intestinalis.
    Kawaguchi A; Utsumi N; Morita M; Ohya A; Wada S
    Genesis; 2015 Jan; 53(1):170-82. PubMed ID: 25366274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embryo Microinjection and Electroporation in the Chordate Ciona intestinalis.
    Kari W; Zeng F; Zitzelsberger L; Will J; Rothbächer U
    J Vis Exp; 2016 Oct; (116):. PubMed ID: 27805579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Huntingtin gene evolution in Chordata and its peculiar features in the ascidian Ciona genus.
    Gissi C; Pesole G; Cattaneo E; Tartari M
    BMC Genomics; 2006 Nov; 7():288. PubMed ID: 17092333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cDNA resource from the basal chordate Ciona intestinalis.
    Satou Y; Yamada L; Mochizuki Y; Takatori N; Kawashima T; Sasaki A; Hamaguchi M; Awazu S; Yagi K; Sasakura Y; Nakayama A; Ishikawa H; Inaba K; Satoh N
    Genesis; 2002 Aug; 33(4):153-4. PubMed ID: 12203911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct examination of chromosomal clustering of organ-specific genes in the chordate Ciona intestinalis.
    Shoguchi E; Hamada M; Fujie M; Satoh N
    Genesis; 2011 Aug; 49(8):662-72. PubMed ID: 21328518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A genomewide survey of developmentally relevant genes in Ciona intestinalis. VII. Molecules involved in the regulation of cell polarity and actin dynamics.
    Sasakura Y; Yamada L; Takatori N; Satou Y; Satoh N
    Dev Genes Evol; 2003 Jun; 213(5-6):273-83. PubMed ID: 12740699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic changes in developmental gene expression in the basal chordate Ciona intestinalis.
    Kawashima T; Satou Y; Murakami SD; Satoh N
    Dev Growth Differ; 2005 Apr; 47(3):187-99. PubMed ID: 15840003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hsp70 protein is involved in the acquisition of gamete self-sterility in the ascidian Ciona intestinalis.
    Marino R; Pinto MR; Cotelli F; Lamia CL; De Santis R
    Development; 1998 Mar; 125(5):899-907. PubMed ID: 9449672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.