These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 37365687)

  • 1. Large-scale data-driven and physics-based models offer insights into the relationships among the structures, dynamics, and functions of chromosomes.
    Feng C; Wang J; Chu X
    J Mol Cell Biol; 2023 Nov; 15(6):. PubMed ID: 37365687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational models of large-scale genome architecture.
    Rosa A; Zimmer C
    Int Rev Cell Mol Biol; 2014; 307():275-349. PubMed ID: 24380598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physics-Based Polymer Models to Probe Chromosome Structure in Single Molecules.
    Conte M; Chiariello AM; Bianco S; Esposito A; Abraham A; Nicodemi M
    Methods Mol Biol; 2023; 2655():57-66. PubMed ID: 37212988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization.
    Knoch TA
    Results Probl Cell Differ; 2022; 70():495-549. PubMed ID: 36348120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer models are a versatile tool to study chromatin 3D organization.
    Esposito A; Bianco S; Fiorillo L; Conte M; Abraham A; Musella F; Nicodemi M; Prisco A; Chiariello AM
    Biochem Soc Trans; 2021 Aug; 49(4):1675-1684. PubMed ID: 34282837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical properties of the chromosomes and implications for development.
    Sugawara T; Kimura A
    Dev Growth Differ; 2017 Jun; 59(5):405-414. PubMed ID: 28573677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Polymer Physics Model to Dissect Genome Organization in Healthy and Pathological Phenotypes.
    Conte M; Fiorillo L; Bianco S; Chiariello AM; Esposito A; Musella F; Flora F; Abraham A; Nicodemi M
    Methods Mol Biol; 2022; 2301():307-316. PubMed ID: 34415543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncovering the statistical physics of 3D chromosomal organization using data-driven modeling.
    Contessoto VG; Cheng RR; Onuchic JN
    Curr Opin Struct Biol; 2022 Aug; 75():102418. PubMed ID: 35839701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling the Machinery behind Chromosome Folding by Polymer Physics Modeling.
    Conte M; Esposito A; Vercellone F; Abraham A; Bianco S
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational approaches from polymer physics to investigate chromatin folding.
    Bianco S; Chiariello AM; Conte M; Esposito A; Fiorillo L; Musella F; Nicodemi M
    Curr Opin Cell Biol; 2020 Jun; 64():10-17. PubMed ID: 32045823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating Dynamic Chromosome Compaction: Methods for Bridging In Silico to In Vivo.
    He Y; Adalsteinsson D; Walker B; Lawrimore J; Forest MG; Bloom K
    Methods Mol Biol; 2022; 2415():211-220. PubMed ID: 34972957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How the Genome Folds: The Biophysics of Four-Dimensional Chromatin Organization.
    Parmar JJ; Woringer M; Zimmer C
    Annu Rev Biophys; 2019 May; 48():231-253. PubMed ID: 30835504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How to build a yeast nucleus.
    Wong H; Arbona JM; Zimmer C
    Nucleus; 2013; 4(5):361-6. PubMed ID: 23974728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Scalable Computational Approach for Simulating Complexes of Multiple Chromosomes.
    Oliveira Junior AB; Contessoto VG; Mello MF; Onuchic JN
    J Mol Biol; 2021 Mar; 433(6):166700. PubMed ID: 33160979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome organization via loop extrusion, insights from polymer physics models.
    Ghosh SK; Jost D
    Brief Funct Genomics; 2020 Mar; 19(2):119-127. PubMed ID: 31711163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Physical Behavior of Interphase Chromosomes: Polymer Theory and Coarse-Grain Computer Simulations.
    Rosa A
    Methods Mol Biol; 2022; 2301():235-258. PubMed ID: 34415539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bridging the resolution gap in structural modeling of 3D genome organization.
    Marti-Renom MA; Mirny LA
    PLoS Comput Biol; 2011 Jul; 7(7):e1002125. PubMed ID: 21779160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inference of chromosome 3D structures from GAM data by a physics computational approach.
    Fiorillo L; Bianco S; Chiariello AM; Barbieri M; Esposito A; Annunziatella C; Conte M; Corrado A; Prisco A; Pombo A; Nicodemi M
    Methods; 2020 Oct; 181-182():70-79. PubMed ID: 31604121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.