These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37365962)

  • 1. An assessment of the impact of Raman based glucose feedback control on CHO cell bioreactor process development.
    Gibbons L; Maslanka F; Le N; Magill A; Singh P; Mclaughlin J; Madden F; Hayes R; McCarthy B; Rode C; O'Mahony J; Rea R; O'Mahony-Hartnett C
    Biotechnol Prog; 2023; 39(5):e3371. PubMed ID: 37365962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman based chemometric model development for glycation and glycosylation real time monitoring in a manufacturing scale CHO cell bioreactor process.
    A Gibbons L; Rafferty C; Robinson K; Abad M; Maslanka F; Le N; Mo J; Clark K; Madden F; Hayes R; McCarthy B; Rode C; O'Mahony J; Rea R; O'Mahony Hartnett C
    Biotechnol Prog; 2022 Mar; 38(2):e3223. PubMed ID: 34738336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture.
    Berry BN; Dobrowsky TM; Timson RC; Kshirsagar R; Ryll T; Wiltberger K
    Biotechnol Prog; 2016; 32(1):224-34. PubMed ID: 26587969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust platform for inline Raman monitoring and control of perfusion cell culture.
    Wan B; Patel M; Zhou G; Olma M; Bieri M; Mueller M; Appiah-Amponsah E; Patel B; Jayapal K
    Biotechnol Bioeng; 2024 May; 121(5):1688-1701. PubMed ID: 38393313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An automated high inoculation density fed-batch bioreactor, enabled through N-1 perfusion, accommodates clonal diversity and doubles titers.
    Olin M; Wolnick N; Crittenden H; Quach A; Russell B; Hendrick S; Armstrong J; Webster T; Hadley B; Dickson M; Hodgkins J; Busa K; Connolly R; Downey B
    Biotechnol Prog; 2024; 40(2):e3410. PubMed ID: 38013663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman-based dynamic feeding strategies using real-time glucose concentration monitoring system during adalimumab producing CHO cell cultivation.
    Domján J; Fricska A; Madarász L; Gyürkés M; Köte Á; Farkas A; Vass P; Fehér C; Horváth B; Könczöl K; Pataki H; Nagy ZK; Marosi GJ; Hirsch E
    Biotechnol Prog; 2020 Nov; 36(6):e3052. PubMed ID: 32692473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. At-line raman spectroscopy and design of experiments for robust monitoring and control of miniature bioreactor cultures.
    Rowland-Jones RC; Jaques C
    Biotechnol Prog; 2019 Mar; 35(2):e2740. PubMed ID: 30378770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Approach for Non-Invasive Continuous In-Line Control of Perfusion Cell Cultivations by Raman Spectroscopy.
    Graf A; Lemke J; Schulze M; Soeldner R; Rebner K; Hoehse M; Matuszczyk J
    Front Bioeng Biotechnol; 2022; 10():719614. PubMed ID: 35547168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated Data Generation for Raman Spectroscopy Calibrations in Multi-Parallel Mini Bioreactors.
    Graf A; Woodhams A; Nelson M; Richardson DD; Short SM; Brower M; Hoehse M
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QbD-guided pharmaceutical development of Pembrolizumab biosimilar candidate PSG-024 propelled to industry meeting primary requirements of comparability to Keytruda®.
    Jaffar-Aghaei M; Khanipour F; Maghsoudi A; Sarvestani R; Mohammadian M; Maleki M; Havasi F; Rahmani H; Karagah AH; Kazemali MR
    Eur J Pharm Sci; 2022 Jun; 173():106171. PubMed ID: 35378209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time monitoring of antibody glycosylation site occupancy by in situ Raman spectroscopy during bioreactor CHO cell cultures.
    Li MY; Ebel B; Paris C; Chauchard F; Guedon E; Marc A
    Biotechnol Prog; 2018 Mar; 34(2):486-493. PubMed ID: 29314747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning monoclonal antibody galactosylation using Raman spectroscopy-controlled lactic acid feeding.
    W Eyster T; Talwar S; Fernandez J; Foster S; Hayes J; Allen R; Reidinger S; Wan B; Ji X; Aon J; Patel P; Ritz DB
    Biotechnol Prog; 2021 Jan; 37(1):e3085. PubMed ID: 32975043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance monitoring of a mammalian cell based bioprocess using Raman spectroscopy.
    Li B; Ray BH; Leister KJ; Ryder AG
    Anal Chim Acta; 2013 Sep; 796():84-91. PubMed ID: 24016587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development and validation of a quality by design based process analytical tool for the inline quantification of Ramipril during hot-melt extrusion.
    Dadou SM; Senta-Loys Z; Almajaan A; Li S; Jones DS; Healy AM; Tian Y; Andrews GP
    Int J Pharm; 2020 Jun; 584():119382. PubMed ID: 32360547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feedback control of two supplemental feeds during fed-batch culture on a platform process using inline Raman models for glucose and phenylalanine concentration.
    Webster TA; Hadley BC; Dickson M; Busa JK; Jaques C; Mason C
    Bioprocess Biosyst Eng; 2021 Jan; 44(1):127-140. PubMed ID: 32816075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-line and real-time prediction of recombinant antibody titer by in situ Raman spectroscopy.
    André S; Cristau LS; Gaillard S; Devos O; Calvosa É; Duponchel L
    Anal Chim Acta; 2015 Sep; 892():148-52. PubMed ID: 26388485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of chemometric models applied to Raman spectroscopy for monitoring key metabolites of cell culture.
    Rafferty C; Johnson K; O'Mahony J; Burgoyne B; Rea R; Balss KM
    Biotechnol Prog; 2020 Jul; 36(4):e2977. PubMed ID: 32012476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-line prediction of the glucose concentration of CHO cell cultivations by NIR and Raman spectroscopy: Comparative scalability test with a shake flask model system.
    Kozma B; Hirsch E; Gergely S; Párta L; Pataki H; Salgó A
    J Pharm Biomed Anal; 2017 Oct; 145():346-355. PubMed ID: 28711673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ process analytical technology for real time viable cell density and cell viability during live-virus vaccine production.
    Lomont JP; Smith JP
    Int J Pharm; 2024 Jan; 649():123630. PubMed ID: 38040394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic assessment of process analytical technologies for biologics.
    Gillespie C; Wasalathanthri DP; Ritz DB; Zhou G; Davis KA; Wucherpfennig T; Hazelwood N
    Biotechnol Bioeng; 2022 Feb; 119(2):423-434. PubMed ID: 34778948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.