BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37366026)

  • 1. New Insights on the Size-Dependent Inhibition of Enzymes by Gold Nanoparticles.
    Chen WQ; Wu WJ; Yu YQ; Liu Y; Jiang FL
    Langmuir; 2023 Jul; 39(27):9595-9603. PubMed ID: 37366026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics, Kinetics and Mechanisms of Noncompetitive Allosteric Inhibition of Chymotrypsin by Dihydrolipoic Acid-Coated Gold Nanoclusters.
    Chen WQ; Yin MM; Song PJ; He XH; Liu Y; Jiang FL
    Langmuir; 2020 Jun; 36(23):6447-6457. PubMed ID: 32460493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein coated gold nanoparticles as template for the directed synthesis of highly fluorescent gold nanoclusters.
    Zhang L; Han F
    Nanotechnology; 2018 Apr; 29(16):165702. PubMed ID: 29424708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidating the interaction of
    Beg M; Maji A; Islam M; Hossain M
    J Biomol Struct Dyn; 2019 Aug; 37(13):3536-3549. PubMed ID: 30175941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of angiogenin inhibition by polyphenol-capped gold nanoparticles.
    Panda A; Karhadkar S; Acharya B; Banerjee A; De S; Dasgupta S
    Biopolymers; 2021 Jul; 112(7):e23429. PubMed ID: 33851721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement in chaperone activity of human αA-crystallin by nanochaperone gold nanoparticles: Multispectroscopic studies on their molecular interactions.
    Sharma A; Rastogi H; Sundar Ghosh K
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121344. PubMed ID: 35605420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction Studies of Greenly Synthesized Gold Nanoparticles with Bovine Serum Albumin (BSA) Using Fluorescence Spectroscopy.
    Ravikumar S; Sreekanth TV; Eom IY
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9617-23. PubMed ID: 26682387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical and spectroscopic studies on the conformational structure of hemoglobin assembled on gold nanoparticles.
    Shao Q; Wu P; Gu P; Xu X; Zhang H; Cai C
    J Phys Chem B; 2011 Jul; 115(26):8627-37. PubMed ID: 21627314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of gold nanoparticle size (2-50 nm) upon its electrochemical behavior: an electrochemical impedance spectroscopic and voltammetric study.
    Bonanni A; Pumera M; Miyahara Y
    Phys Chem Chem Phys; 2011 Mar; 13(11):4980-6. PubMed ID: 21258669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake and cytotoxicity of citrate-coated gold nanospheres: Comparative studies on human endothelial and epithelial cells.
    Freese C; Uboldi C; Gibson MI; Unger RE; Weksler BB; Romero IA; Couraud PO; Kirkpatrick CJ
    Part Fibre Toxicol; 2012 Jul; 9():23. PubMed ID: 22759355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The thyroid hormone converting enzyme human deiodinase 1 is inhibited by gold ions from inorganic salts, organic substances, and by small-size nanoparticles.
    Weber AG; Birk B; Müller C; Schneider S; van Ravenzwaay B; Funk-Weyer D; Landsiedel R
    Chem Biol Interact; 2022 Jan; 351():109709. PubMed ID: 34662569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of surface compositional and structural heterogeneity on nanoparticle-protein interactions: different protein configurations.
    Huang R; Carney RP; Ikuma K; Stellacci F; Lau BL
    ACS Nano; 2014 Jun; 8(6):5402-12. PubMed ID: 24882660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of gold nanoparticles with different sizes on polymerase chain reaction efficiency.
    Wan W; Yeow JT
    Nanotechnology; 2009 Aug; 20(32):325702. PubMed ID: 19620768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of adenosine triphosphate based on the use of fluorescent terbium(III) organic frameworks and aptamer modified gold nanoparticles.
    Sun C; Zhao S; Qu F; Han W; You J
    Mikrochim Acta; 2019 Dec; 187(1):34. PubMed ID: 31814046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells.
    Liu X; Huang N; Li H; Jin Q; Ji J
    Langmuir; 2013 Jul; 29(29):9138-48. PubMed ID: 23815604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distance dependent fluorescence quenching and enhancement of gold nanoclusters by gold nanoparticles.
    Qin H; Ma D; Du J
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():161-166. PubMed ID: 28810178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual mode fluorometric and colorimetric detection of matrix metalloproteinase MMP-9 as a cancer biomarker based on AuNPs@gelatin/AuNCs nanocomposite.
    Dadmehr M; Mortezaei M; Korouzhdehi B
    Biosens Bioelectron; 2023 Jan; 220():114889. PubMed ID: 36368143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence quenching of uranine on confeito-like Au nanoparticles.
    Ujihara M; Dang NM; Imae T
    J Nanosci Nanotechnol; 2014 Jul; 14(7):4906-10. PubMed ID: 24757961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model beyond protein corona: thermodynamics and binding stoichiometries of the interactions between ultrasmall gold nanoclusters and proteins.
    Yin MM; Chen WQ; Lu YQ; Han JY; Liu Y; Jiang FL
    Nanoscale; 2020 Feb; 12(7):4573-4585. PubMed ID: 32043104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the association constant and stoichiometry of the complexation between colloidal polyacrylate-coated gold nanoparticles and chymotrypsin.
    Hou J; Szaflarski DM; Simon JD
    J Phys Chem B; 2013 Apr; 117(16):4587-93. PubMed ID: 23305403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.