BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37366026)

  • 21. The interaction mechanism between gold nanoparticles and proteins: Lysozyme, trypsin, pepsin, γ-globulin, and hemoglobin.
    Li X; Guo W; Xu R; Song Z; Ni T
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 272():120983. PubMed ID: 35149482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Size-Dependent Cellular Uptake of DNA Functionalized Gold Nanoparticles.
    Wong AC; Wright DW
    Small; 2016 Oct; 12(40):5592-5600. PubMed ID: 27562251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein-nanoparticle interactions: the effects of surface compositional and structural heterogeneity are scale dependent.
    Huang R; Carney RP; Stellacci F; Lau BL
    Nanoscale; 2013 Aug; 5(15):6928-35. PubMed ID: 23787874
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters.
    Špringer T; Ermini ML; Špačková B; Jabloňků J; Homola J
    Anal Chem; 2014 Oct; 86(20):10350-6. PubMed ID: 25226207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gold nanoparticles inhibit tumor growth via targeting the Warburg effect in a c-Myc-dependent way.
    Sun L; Liu Y; Yang N; Ye X; Liu Z; Wu J; Zhou M; Zhong W; Cao M; Zhang J; Mequanint K; Xing M; Liao W
    Acta Biomater; 2023 Mar; 158():583-598. PubMed ID: 36586500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and activity of native and thiolated α-chymotrypsin adsorbed onto gold nanoparticles.
    Riley MB; Strandquist E; Weitzel CS; Driskell JD
    Colloids Surf B Biointerfaces; 2022 Dec; 220():112867. PubMed ID: 36182820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Size-dependent PCR inhibitory effect induced by gold nanoparticles.
    Wan W; Yeow JT; Van Dyke MI
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2771-4. PubMed ID: 19964596
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Orthogonal analysis of functional gold nanoparticles for biomedical applications.
    Tsai DH; Lu YF; DelRio FW; Cho TJ; Guha S; Zachariah MR; Zhang F; Allen A; Hackley VA
    Anal Bioanal Chem; 2015 Nov; 407(28):8411-22. PubMed ID: 26362156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size-Dependent Interactions of Lipid-Coated Gold Nanoparticles: Developing a Better Mechanistic Understanding Through Model Cell Membranes and in vivo Toxicity.
    Engstrom AM; Faase RA; Marquart GW; Baio JE; Mackiewicz MR; Harper SL
    Int J Nanomedicine; 2020; 15():4091-4104. PubMed ID: 32606666
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Green synthesis of gold and silver nanoparticles from
    Singh P; Pandit S; Garnæs J; Tunjic S; Mokkapati VR; Sultan A; Thygesen A; Mackevica A; Mateiu RV; Daugaard AE; Baun A; Mijakovic I
    Int J Nanomedicine; 2018; 13():3571-3591. PubMed ID: 29950836
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications.
    Singh H; Du J; Singh P; Yi TH
    Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1163-1170. PubMed ID: 28784039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extracellular facile biosynthesis, characterization and stability of gold nanoparticles by Bacillus licheniformis.
    Singh S; Vidyarthi AS; Nigam VK; Dev A
    Artif Cells Nanomed Biotechnol; 2014 Feb; 42(1):6-12. PubMed ID: 23438180
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A multiparametric study of gold nanoparticles cytotoxicity, internalization and permeability using an
    Enea M; Peixoto de Almeida M; Eaton P; Dias da Silva D; Pereira E; Soares ME; Bastos ML; Carmo H
    Nanotoxicology; 2019 Sep; 13(7):990-1004. PubMed ID: 31106633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of gold nanoparticle morphologies on interactions with proteins.
    Wang G; Wang W; Shangguan E; Gao S; Liu Y
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110830. PubMed ID: 32279803
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A fluorometric sensing method for sensitive detection of trypsin and its inhibitor based on gold nanoclusters and gold nanoparticles.
    Wang M; Su D; Wang G; Su X
    Anal Bioanal Chem; 2018 Oct; 410(26):6891-6900. PubMed ID: 30105625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polyethylenimine-mediated controlled synthesis of Prussian blue-gold nanohybrids for biomedical applications.
    Pandey P; Pandey G; Narayan R
    J Biomater Appl; 2021 Jul; 36(1):26-35. PubMed ID: 33297833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmonic Imaging of Oxidation and Reduction of Single Gold Nanoparticles and Their Surface Structural Dynamics.
    Garcia A; Wang S; Tao N; Shan X; Wang Y
    ACS Sens; 2021 Feb; 6(2):502-507. PubMed ID: 33373199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-assembly of bacitracin-gold nanoparticles and their toxicity analysis.
    Li X; Wang Z; Li Y; Bian K; Yin T; Gao D
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():310-316. PubMed ID: 29025663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Size, composition, and surface capping-dependent catalytic activity of spherical gold nanoparticles.
    Yuan X; Ge L; Zhou H; Tang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 287(Pt 2):122082. PubMed ID: 36370632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance evaluation of flow field-flow fractionation and electrothermal atomic absorption spectrometry for size characterization of gold nanoparticles.
    Mekprayoon S; Siripinyanond A
    J Chromatogr A; 2019 Oct; 1604():460493. PubMed ID: 31481294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.