These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 37366232)
1. A vacuolar transporter plays important roles in zinc and cadmium accumulation in rice grain. Ning M; Liu SJ; Deng F; Huang L; Li H; Che J; Yamaji N; Hu F; Lei GJ New Phytol; 2023 Sep; 239(5):1919-1934. PubMed ID: 37366232 [TBL] [Abstract][Full Text] [Related]
2. A Vacuolar Phytosiderophore Transporter Alters Iron and Zinc Accumulation in Polished Rice Grains. Che J; Yokosho K; Yamaji N; Ma JF Plant Physiol; 2019 Sep; 181(1):276-288. PubMed ID: 31331995 [TBL] [Abstract][Full Text] [Related]
3. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification. Yoneyama T; Ishikawa S; Fujimaki S Int J Mol Sci; 2015 Aug; 16(8):19111-29. PubMed ID: 26287170 [TBL] [Abstract][Full Text] [Related]
4. Functional analysis of the rice vacuolar zinc transporter OsMTP1. Menguer PK; Farthing E; Peaston KA; Ricachenevsky FK; Fett JP; Williams LE J Exp Bot; 2013 Jul; 64(10):2871-83. PubMed ID: 23761487 [TBL] [Abstract][Full Text] [Related]
5. The tonoplast-localized transporter OsABCC9 is involved in cadmium tolerance and accumulation in rice. Yang G; Fu S; Huang J; Li L; Long Y; Wei Q; Wang Z; Chen Z; Xia J Plant Sci; 2021 Jun; 307():110894. PubMed ID: 33902855 [TBL] [Abstract][Full Text] [Related]
6. Molecular characterization of a rice metal tolerance protein, OsMTP1. Yuan L; Yang S; Liu B; Zhang M; Wu K Plant Cell Rep; 2012 Jan; 31(1):67-79. PubMed ID: 21892614 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. Sasaki A; Yamaji N; Ma JF J Exp Bot; 2014 Nov; 65(20):6013-21. PubMed ID: 25151617 [TBL] [Abstract][Full Text] [Related]
8. Dissecting the promotional effect of zinc on cadmium translocation from roots to shoots in rice. Chang JD; Huang S; Wiseno I; Sui FQ; Feng F; Zheng L; Ma JF; Zhao FJ J Exp Bot; 2023 Nov; 74(21):6790-6803. PubMed ID: 37610886 [TBL] [Abstract][Full Text] [Related]
9. Producing cadmium-free Indica rice by overexpressing OsHMA3. Lu C; Zhang L; Tang Z; Huang XY; Ma JF; Zhao FJ Environ Int; 2019 May; 126():619-626. PubMed ID: 30856449 [TBL] [Abstract][Full Text] [Related]
10. Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Das N; Bhattacharya S; Maiti MK Plant Physiol Biochem; 2016 Aug; 105():297-309. PubMed ID: 27214086 [TBL] [Abstract][Full Text] [Related]
11. OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Tan L; Zhu Y; Fan T; Peng C; Wang J; Sun L; Chen C Biochem Biophys Res Commun; 2019 Apr; 512(1):112-118. PubMed ID: 30871778 [TBL] [Abstract][Full Text] [Related]
12. The role of arbuscular mycorrhizal fungi in micronutrient homeostasis and cadmium uptake and transfer in rice under different flooding intensities. Xu Y; Lambers H; Feng J; Tu Y; Peng Z; Huang J Ecotoxicol Environ Saf; 2024 Oct; 284():116978. PubMed ID: 39232292 [TBL] [Abstract][Full Text] [Related]
13. Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain. Chang JD; Huang S; Konishi N; Wang P; Chen J; Huang XY; Ma JF; Zhao FJ J Exp Bot; 2020 Sep; 71(18):5705-5715. PubMed ID: 32542348 [TBL] [Abstract][Full Text] [Related]
14. The ZIP Transporter Family Member OsZIP9 Contributes To Root Zinc Uptake in Rice under Zinc-Limited Conditions. Huang S; Sasaki A; Yamaji N; Okada H; Mitani-Ueno N; Ma JF Plant Physiol; 2020 Jul; 183(3):1224-1234. PubMed ID: 32371522 [TBL] [Abstract][Full Text] [Related]
15. Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration. Cao ZZ; Qin ML; Lin XY; Zhu ZW; Chen MX Environ Pollut; 2018 Jul; 238():76-84. PubMed ID: 29547864 [TBL] [Abstract][Full Text] [Related]
16. Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa). Tian S; Liang S; Qiao K; Wang F; Zhang Y; Chai T J Hazard Mater; 2019 Dec; 380():120853. PubMed ID: 31279944 [TBL] [Abstract][Full Text] [Related]
17. Development of nutritious rice with high zinc/selenium and low cadmium in grains through QTL pyramiding. Liu C; Ding S; Zhang A; Hong K; Jiang H; Yang S; Ruan B; Zhang B; Dong G; Guo L; Zeng D; Qian Q; Gao Z J Integr Plant Biol; 2020 Mar; 62(3):349-359. PubMed ID: 31957138 [TBL] [Abstract][Full Text] [Related]
18. Role of a vacuolar iron transporter OsVIT2 in the distribution of iron to rice grains. Che J; Yamaji N; Ma JF New Phytol; 2021 May; 230(3):1049-1062. PubMed ID: 33474769 [TBL] [Abstract][Full Text] [Related]
19. Improved Cd, Zn and Mn tolerance and reduced Cd accumulation in grains with wheat-based cell number regulator TaCNR2. Qiao K; Wang F; Liang S; Wang H; Hu Z; Chai T Sci Rep; 2019 Jan; 9(1):870. PubMed ID: 30696904 [TBL] [Abstract][Full Text] [Related]
20. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Takahashi R; Ishimaru Y; Shimo H; Ogo Y; Senoura T; Nishizawa NK; Nakanishi H Plant Cell Environ; 2012 Nov; 35(11):1948-57. PubMed ID: 22548273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]