These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37366646)

  • 1. Monolayer molybdenum diborides containing flat and buckled boride layers as anode materials for lithium-ion batteries.
    Barik G; Pal S
    Phys Chem Chem Phys; 2023 Jul; 25(26):17667-17679. PubMed ID: 37366646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BlueP encapsulated Janus MoSSe as a promising heterostructure anode material for LIBs.
    Barik G; Pal S
    Phys Chem Chem Phys; 2024 Jul; 26(26):18054-18066. PubMed ID: 38895793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A density functional theory study of high-performance pre-lithiated MS
    Liu T; Jin Z; Liu DX; Du C; Wang L; Lin H; Li Y
    Sci Rep; 2020 Apr; 10(1):6897. PubMed ID: 32327695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation on electrochemical performance of striped, β12 and χ3 Borophene as anode materials for lithium-ion batteries.
    Karimzadeh S; Safaei B; Jen TC
    J Mol Graph Model; 2023 May; 120():108423. PubMed ID: 36731208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hexagonal Ti
    Bo T; Liu PF; Xu J; Zhang J; Chen Y; Eriksson O; Wang F; Wang BT
    Phys Chem Chem Phys; 2018 Aug; 20(34):22168-22178. PubMed ID: 30116799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles prediction of a two-dimensional vanadium carbide (MXene) as the anode for lithium ion batteries.
    Nyamdelger S; Ochirkhuyag T; Sangaa D; Odkhuu D
    Phys Chem Chem Phys; 2020 Mar; 22(10):5807-5818. PubMed ID: 32105283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Li adsorption and diffusion on the surfaces of molybdenum dichalcogenides MoX
    Bounbaâ M; Khuili M; Fazouan N; Atmani EH; Allaoui I; Houmad M
    J Mol Model; 2023 Nov; 29(12):378. PubMed ID: 37968434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monolayer PC
    Fan K; Ying Y; Luo X; Huang H
    Phys Chem Chem Phys; 2020 Aug; 22(29):16665-16671. PubMed ID: 32658220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive Study of Lithium Adsorption and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using First-Principles and Machine Learning Approaches.
    Chaney G; Ibrahim A; Ersan F; Çakır D; Ataca C
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36388-36406. PubMed ID: 34304560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomistic Dynamics Investigation of the Thermomechanical Properties and Li Diffusion Kinetics in ψ-Graphene for LIB Anode Material.
    Thomas S; Nam EB; Lee SU
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36240-36248. PubMed ID: 30259728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential Application of Graphene/Antimonene Herterostructure as an Anode for Li-Ion Batteries: A First-Principles Study.
    Wu P; Li P; Huang M
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31658597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition-Metal Phosphorus Trisulfides and its Vacancy Defects: Emergence of a New Class of Anode Material for Li-Ion Batteries.
    Jana R; Chowdhury C; Datta A
    ChemSusChem; 2020 Aug; 13(15):3855-3864. PubMed ID: 32459038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles study of two-dimensional C-silicyne nanosheet as a promising anode material for rechargeable Li-ion batteries.
    Duhan N; Dhilip Kumar TJ
    Phys Chem Chem Phys; 2022 Aug; 24(34):20274-20281. PubMed ID: 35975638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The capacity fading mechanism and improvement of cycling stability in MoS2-based anode materials for lithium-ion batteries.
    Shu H; Li F; Hu C; Liang P; Cao D; Chen X
    Nanoscale; 2016 Feb; 8(5):2918-26. PubMed ID: 26780964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Dimensional V
    Liu H; Cai Y; Guo Z; Zhou J
    ACS Omega; 2022 May; 7(21):17756-17764. PubMed ID: 35664630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced performance of Mo
    Liu X; Lin S; Gao J; Shi H; Kim SG; Chen Z; Lee H
    Phys Chem Chem Phys; 2021 Feb; 23(6):4030-4038. PubMed ID: 33554982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density functional theory prediction of Mg
    Xiong L; Hu J; Yu S; Wu M; Xu B; Ouyang C
    Phys Chem Chem Phys; 2019 Mar; 21(13):7053-7060. PubMed ID: 30874256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible C
    Xiang P; Sharma S; Wang ZM; Wu J; Schwingenschlögl U
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30731-30739. PubMed ID: 32584015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional Dirac TiB
    Etrini A; Elomrani A; Oukahou S; Maymoun M; Sbiaai K; Hasnaoui A
    Phys Chem Chem Phys; 2023 Aug; 25(32):21699-21707. PubMed ID: 37551786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption and Diffusion of Lithium and Sodium on Defective Rhenium Disulfide: A First Principles Study.
    Mukherjee S; Banwait A; Grixti S; Koratkar N; Singh CV
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5373-5384. PubMed ID: 29350901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.