These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 37366648)
1. Evaluating nanoparticle localisation in glioblastoma multicellular tumour spheroids by surface enhanced Raman scattering. McCabe SM; Wallace GQ; Sloan-Dennison S; Tipping WJ; Shand NC; Graham D; Boyd M; Faulds K Analyst; 2023 Jul; 148(14):3247-3256. PubMed ID: 37366648 [TBL] [Abstract][Full Text] [Related]
2. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method. Lin M; Wang Y; Sun X; Wang W; Chen L ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901 [TBL] [Abstract][Full Text] [Related]
4. Surface enhanced resonance Raman spectroscopy (SERRS) for probing through plastic and tissue barriers using a handheld spectrometer. Nicolson F; Jamieson LE; Mabbott S; Plakas K; Shand NC; Detty MR; Graham D; Faulds K Analyst; 2018 Dec; 143(24):5965-5973. PubMed ID: 30225477 [TBL] [Abstract][Full Text] [Related]
5. Gd Xiao L; Tian X; Harihar S; Li Q; Li L; Welch DR; Zhou A Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 181():218-225. PubMed ID: 28365452 [TBL] [Abstract][Full Text] [Related]
6. Accurate Quantification and Imaging of Cellular Uptake Using Single-Particle Surface-Enhanced Raman Scattering. Scarpitti BT; Fan S; Lomax-Vogt M; Lutton A; Olesik JW; Schultz ZD ACS Sens; 2024 Jan; 9(1):73-80. PubMed ID: 38100727 [TBL] [Abstract][Full Text] [Related]
7. Gold and silver nanoparticle monomers are non-SERS-active: a negative experimental study with silica-encapsulated Raman-reporter-coated metal colloids. Zhang Y; Walkenfort B; Yoon JH; Schlücker S; Xie W Phys Chem Chem Phys; 2015 Sep; 17(33):21120-6. PubMed ID: 25491599 [TBL] [Abstract][Full Text] [Related]
8. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates. Roca M; Haes AJ J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552 [TBL] [Abstract][Full Text] [Related]
9. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate. Ngo YH; Li D; Simon GP; Garnier G Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710 [TBL] [Abstract][Full Text] [Related]
10. Surface charge modulates the internalization vs. penetration of gold nanoparticles: comprehensive scrutiny on monolayer cancer cells, multicellular spheroids and solid tumors by SERS modality. Sujai PT; Joseph MM; Saranya G; Nair JB; Murali VP; Maiti KK Nanoscale; 2020 Apr; 12(13):6971-6975. PubMed ID: 32202584 [TBL] [Abstract][Full Text] [Related]
11. Rapid and sensitive SERS detection of the cytokine tumor necrosis factor alpha (tnf-α) in a magnetic bead pull-down assay with purified and highly Raman-active gold nanoparticle clusters. Lai Y; Schlücker S; Wang Y Anal Bioanal Chem; 2018 Sep; 410(23):5993-6000. PubMed ID: 29959484 [TBL] [Abstract][Full Text] [Related]
12. Detection of Estrogen Receptor Alpha and Assessment of Fulvestrant Activity in MCF-7 Tumor Spheroids Using Microfluidics and SERS. Kapara A; Findlay Paterson KA; Brunton VG; Graham D; Zagnoni M; Faulds K Anal Chem; 2021 Apr; 93(14):5862-5871. PubMed ID: 33797884 [TBL] [Abstract][Full Text] [Related]
13. Synergistic targeting tenascin C and neuropilin-1 for specific penetration of nanoparticles for anti-glioblastoma treatment. Kang T; Zhu Q; Jiang D; Feng X; Feng J; Jiang T; Yao J; Jing Y; Song Q; Jiang X; Gao X; Chen J Biomaterials; 2016 Sep; 101():60-75. PubMed ID: 27267628 [TBL] [Abstract][Full Text] [Related]
14. Inflammatory bowel disease alters in vivo distribution of orally administrated nanoparticles: Revealing via SERS tag labeling technique. Tan M; Wang Y; Ji Y; Mei R; Zhao X; Song J; You J; Chen L; Wang X Talanta; 2024 Aug; 275():126172. PubMed ID: 38692050 [TBL] [Abstract][Full Text] [Related]
15. A novel SERS nanoprobe based on the use of core-shell nanoparticles with embedded reporter molecule to detect E. coli O157:H7 with high sensitivity. Zhu T; Hu Y; Yang K; Dong N; Yu M; Jiang N Mikrochim Acta; 2017 Dec; 185(1):30. PubMed ID: 29594575 [TBL] [Abstract][Full Text] [Related]
16. Live chicken egg embryos as an alternative McCabe SM; Gardiner H; Mullen C; Wallace GQ; Shand NC; Mullen AB; Horan L; Graham D; Faulds K; Boyd M Analyst; 2024 Jun; 149(13):3513-3517. PubMed ID: 38842276 [TBL] [Abstract][Full Text] [Related]
17. AMP coated SERS NanoTags with hydrophobic locking: Maximizing brightness, stability, and cellular targetability. Lane LA; Zhang J; Wang Y J Colloid Interface Sci; 2024 Jun; 663():295-308. PubMed ID: 38402824 [TBL] [Abstract][Full Text] [Related]
18. A high-resolution study of in situ surface-enhanced Raman scattering nanotag behavior in biological systems. Wang J; Anderson W; Li J; Lin LL; Wang Y; Trau M J Colloid Interface Sci; 2019 Mar; 537():536-546. PubMed ID: 30469121 [TBL] [Abstract][Full Text] [Related]
19. Imaging Tumor Oxidative Stress with Surface Enhanced Raman Scattering Gold Nanoparticles. Razavi M; Ren G; Wang J; Kimura R; Thakor AS J Biomed Nanotechnol; 2019 Oct; 15(10):2130-2141. PubMed ID: 31462377 [TBL] [Abstract][Full Text] [Related]
20. A Systematic Approach toward Enabling Maximal Targeting Efficiency of Cell Surface Proteins with Actively Targeted SERS Nanoparticles. Bagheri P; Eremina OE; Fernando A; Kamal M; Stegis I; Vazquez C; Shishido SN; Kuhn P; Zavaleta C ACS Appl Mater Interfaces; 2024 Apr; 16(13):15847-15860. PubMed ID: 38507685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]