These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37366814)

  • 1. Predicting Wrist Joint Angles from the Kinematics of the Arm: Application to the Control of Upper Limb Prostheses.
    Pérez-González A; Roda-Casanova V; Sabater-Gazulla J
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37366814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shoulder kinematics plus contextual target information enable control of multiple distal joints of a simulated prosthetic arm and hand.
    Mick S; Segas E; Dure L; Halgand C; Benois-Pineau J; Loeb GE; Cattaert D; de Rugy A
    J Neuroeng Rehabil; 2021 Jan; 18(1):3. PubMed ID: 33407618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normal functional range of motion of upper limb joints during performance of three feeding activities.
    Safaee-Rad R; Shwedyk E; Quanbury AO; Cooper JE
    Arch Phys Med Rehabil; 1990 Jun; 71(7):505-9. PubMed ID: 2350221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Errors in the control of joint rotations associated with inaccuracies in overarm throws.
    Hore J; Watts S; Tweed D
    J Neurophysiol; 1996 Mar; 75(3):1013-25. PubMed ID: 8867114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of stroke-related upper limb motor impairments across various upper limb activities by use of kinematic core set measures.
    Schwarz A; Bhagubai MMC; Nies SHG; Held JPO; Veltink PH; Buurke JH; Luft AR
    J Neuroeng Rehabil; 2022 Jan; 19(1):2. PubMed ID: 35016694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of distal arm joint angles from EMG and shoulder orientation for transhumeral prostheses.
    Akhtar A; Aghasadeghi N; Hargrove L; Bretl T
    J Electromyogr Kinesiol; 2017 Aug; 35():86-94. PubMed ID: 28624687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of distal arm joint angles from EMG and shoulder orientation for prosthesis control.
    Akhtar A; Hargrove LJ; Bretl T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4160-3. PubMed ID: 23366844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upper-limb surface electro-myography at maximum supination and pronation torques: the effect of elbow and forearm angle.
    O'Sullivan LW; Gallwey TJ
    J Electromyogr Kinesiol; 2002 Aug; 12(4):275-85. PubMed ID: 12121684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of joint rotations to racquet speed in the tennis serve.
    Gordon BJ; Dapena J
    J Sports Sci; 2006 Jan; 24(1):31-49. PubMed ID: 16368612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting arm posture synergies in activities of daily living to control the wrist rotation in upper limb prostheses: A feasibility study.
    Montagnani F; Controzzi M; Cipriani C
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2462-5. PubMed ID: 26736792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergy-Space Recurrent Neural Network for Transferable Forearm Motion Prediction from Residual Limb Motion.
    Ahmed MH; Chai J; Shimoda S; Hayashibe M
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic comparison of the wrist movements that are possible with a biomechatronics wrist prosthesis and a body-powered prosthesis: a preliminary study.
    Abd Razak NA; Abu Osman NA; Wan Abas WA
    Disabil Rehabil Assist Technol; 2013 May; 8(3):255-60. PubMed ID: 22830946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential platform for real-time prosthesis control.
    Crouch DL; Huang H
    J Biomech; 2016 Dec; 49(16):3901-3907. PubMed ID: 27814972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of an underactuated arm exoskeleton on wrist and elbow kinematics during Prioritized Activities of daily living.
    Casanova-Batlle E; de Zee M; Thøgersen M; Tillier Y; Andreasen Struijk LNS
    J Biomech; 2022 Jun; 139():111137. PubMed ID: 35594818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A marker-based mean finite helical axis model to determine elbow rotation axes and kinematics in vivo.
    Chin A; Lloyd D; Alderson J; Elliott B; Mills P
    J Appl Biomech; 2010 Aug; 26(3):305-15. PubMed ID: 20841622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Compensatory Movement by Shoulder Joint Torque during Gain Adjustment of a Powered Prosthetic Wrist Joint.
    Kato A; Nagumo H; Tamon M; Fujie MG; Sugano S
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1891-1894. PubMed ID: 30440766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematic analysis of impairments and compensatory motor behavior during prosthetic grasping in below-elbow amputees.
    Touillet A; Gouzien A; Badin M; Herbe P; Martinet N; Jarrassé N; Roby-Brami A
    PLoS One; 2022; 17(11):e0277917. PubMed ID: 36399487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensating for Soft-Tissue Artifact Using the Orientation of Distal Limb Segments During Electromagnetic Motion Capture of the Upper Limb.
    Bons Z; Dickinson T; Clark R; Beardsley K; Charles SK
    J Biomech Eng; 2022 Jul; 144(7):. PubMed ID: 34951462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional kinematics of upper limb anatomical movements in asymptomatic adults: Dominant vs. non-dominant.
    Assi A; Bakouny Z; Karam M; Massaad A; Skalli W; Ghanem I
    Hum Mov Sci; 2016 Dec; 50():10-18. PubMed ID: 27639219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moment arms and lengths of human upper limb muscles as functions of joint angles.
    Pigeon P; Yahia L; Feldman AG
    J Biomech; 1996 Oct; 29(10):1365-70. PubMed ID: 8884483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.