These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37366835)

  • 1. The Task Decomposition and Dedicated Reward-System-Based Reinforcement Learning Algorithm for Pick-and-Place.
    Kim B; Kwon G; Park C; Kwon NK
    Biomimetics (Basel); 2023 Jun; 8(2):. PubMed ID: 37366835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforcement Learning with Task Decomposition and Task-Specific Reward System for Automation of High-Level Tasks.
    Kwon G; Kim B; Kwon NK
    Biomimetics (Basel); 2024 Mar; 9(4):. PubMed ID: 38667207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of a Real-Time Object Pick-and-Place System Based on a Changing Strategy for Rapidly-Exploring Random Tree.
    Wong CC; Chen CJ; Wong KY; Feng HM
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavior fusion for deep reinforcement learning.
    Shi H; Xu M; Hwang KS; Cai BY
    ISA Trans; 2020 Mar; 98():434-444. PubMed ID: 31543262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Failure Handling of Robotic Pick and Place Tasks With Multimodal Cues Under Partial Object Occlusion.
    Zhu F; Wang L; Wen Y; Yang L; Pan J; Wang Z; Wang W
    Front Neurorobot; 2021; 15():570507. PubMed ID: 33762921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robot grasping method optimization using improved deep deterministic policy gradient algorithm of deep reinforcement learning.
    Zhang H; Wang F; Wang J; Cui B
    Rev Sci Instrum; 2021 Feb; 92(2):025114. PubMed ID: 33648152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive Discount Factor for Deep Reinforcement Learning in Continuing Tasks with Uncertainty.
    Kim M; Kim JS; Choi MS; Park JH
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of continuum robot arms under reinforcement learning and derived improvements.
    Morimoto R; Ikeda M; Niiyama R; Kuniyoshi Y
    Front Robot AI; 2022; 9():895388. PubMed ID: 36119726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On Automated Object Grasping for Intelligent Prosthetic Hands Using Machine Learning.
    Odeyemi J; Ogbeyemi A; Wong K; Zhang W
    Bioengineering (Basel); 2024 Jan; 11(2):. PubMed ID: 38391594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distributed deep reinforcement learning based on bi-objective framework for multi-robot formation.
    Li J; Liu Q; Chi G
    Neural Netw; 2024 Mar; 171():61-72. PubMed ID: 38091765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcement Learning-Based Reactive Obstacle Avoidance Method for Redundant Manipulators.
    Shen Y; Jia Q; Huang Z; Wang R; Fei J; Chen G
    Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modular deep reinforcement learning from reward and punishment for robot navigation.
    Wang J; Elfwing S; Uchibe E
    Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Path Planning for Multi-Arm Manipulators Using Deep Reinforcement Learning: Soft Actor-Critic with Hindsight Experience Replay.
    Prianto E; Kim M; Park JH; Bae JH; Kim JS
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33086774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Reinforcement Learning Based Trajectory Planning Under Uncertain Constraints.
    Chen L; Jiang Z; Cheng L; Knoll AC; Zhou M
    Front Neurorobot; 2022; 16():883562. PubMed ID: 35586262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Reinforcement Learning-Based Accurate Control of Planetary Soft Landing.
    Xu X; Chen Y; Bai C
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. End-to-End AUV Motion Planning Method Based on Soft Actor-Critic.
    Yu X; Sun Y; Wang X; Zhang G
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive Hybrid Optimization Learning-Based Accurate Motion Planning of Multi-Joint Arm.
    Bai C; Zhang J; Guo J; Yue CP
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5440-5451. PubMed ID: 37027270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-Reinforcement-Learning-Based Object Transportation Using Task Space Decomposition.
    Eoh G
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinforcement Learning With Vision-Proprioception Model for Robot Planar Pushing.
    Cong L; Liang H; Ruppel P; Shi Y; Görner M; Hendrich N; Zhang J
    Front Neurorobot; 2022; 16():829437. PubMed ID: 35308311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.