These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37366845)

  • 1. Hand Grasp Pose Prediction Based on Motion Prior Field.
    Shi X; Guo W; Xu W; Sheng X
    Biomimetics (Basel); 2023 Jun; 8(2):. PubMed ID: 37366845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grasp Stability Prediction for a Dexterous Robotic Hand Combining Depth Vision and Haptic Bayesian Exploration.
    Siddiqui MS; Coppola C; Solak G; Jamone L
    Front Robot AI; 2021; 8():703869. PubMed ID: 34458325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward Human-Like Grasp: Functional Grasp by Dexterous Robotic Hand Via Object-Hand Semantic Representation.
    Zhu T; Wu R; Hang J; Lin X; Sun Y
    IEEE Trans Pattern Anal Mach Intell; 2023 Oct; 45(10):12521-12534. PubMed ID: 37134035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting Robot Hand Compliance and Environmental Constraints for Edge Grasps.
    Bimbo J; Turco E; Ghazaei Ardakani M; Pozzi M; Salvietti G; Bo V; Malvezzi M; Prattichizzo D
    Front Robot AI; 2019; 6():135. PubMed ID: 33501150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direction of Slip Detection for Adaptive Grasp Force Control with a Dexterous Robotic Hand.
    Abd MA; Gonzalez IJ; Colestock TC; Kent BA; Engeberg ED
    IEEE ASME Int Conf Adv Intell Mechatron; 2018 Jul; 2018():21-27. PubMed ID: 32042473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-Hand Motion Capture by Using Biological Inspiration for Bionic Bimanual Robot Teleoperation.
    Gao Q; Deng Z; Ju Z; Zhang T
    Cyborg Bionic Syst; 2023; 4():0052. PubMed ID: 37711160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human reach-to-grasp compensation with object pose uncertainty.
    Fu Q; Ushani A; Jentoft L; Howe RD; Santella M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6893-6. PubMed ID: 24111329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning Grasp Configuration Through Object-Specific Hand Primitives for Posture Planning of Anthropomorphic Hands.
    Liu B; Jiang L; Fan S; Dai J
    Front Neurorobot; 2021; 15():740262. PubMed ID: 34603004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling the structure of object-independent human affordances of approaching to grasp for robotic hands.
    Cotugno G; Konstantinova J; Althoefer K; Nanayakkara T
    PLoS One; 2018; 13(12):e0208228. PubMed ID: 30586407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A user-friendly automatic toolbox for hand kinematic analysis, clinical assessment and postural synergies extraction.
    Lapresa M; Zollo L; Cordella F
    Front Bioeng Biotechnol; 2022; 10():1010073. PubMed ID: 36440447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attention Based Visual Analysis for Fast Grasp Planning With a Multi-Fingered Robotic Hand.
    Deng Z; Gao G; Frintrop S; Sun F; Zhang C; Zhang J
    Front Neurorobot; 2019; 13():60. PubMed ID: 31417391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HANDS: a multimodal dataset for modeling toward human grasp intent inference in prosthetic hands.
    Han M; Günay SY; Schirner G; Padır T; Erdoğmuş D
    Intell Serv Robot; 2020 Jan; 13(1):179-185. PubMed ID: 33312264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bionic Hand for Semi-Autonomous Fragile Object Manipulation via Proximity and Pressure Sensors.
    Hansen TC; Trout MA; Segil JL; Warren DJ; George JA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6465-6469. PubMed ID: 34892591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robot Intelligent Grasp of Unknown Objects Based on Multi-Sensor Information.
    Ji SQ; Huang MB; Huang HP
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30986985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EMG-driven shared human-robot compliant control for in-hand object manipulation in hand prostheses.
    Khadivar F; Mendez V; Correia C; Batzianoulis I; Billard A; Micera S
    J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36384035
    [No Abstract]   [Full Text] [Related]  

  • 16. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bio-inspired Grasp Stiffness Control for Robotic Hands.
    Ruiz Garate V; Pozzi M; Prattichizzo D; Ajoudani A
    Front Robot AI; 2018; 5():89. PubMed ID: 33500968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Detection of Myocontrol Failures Based upon Situational Context Information.
    Heiwolt K; Zito C; Nowak M; Castellini C; Stolkin R
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():398-404. PubMed ID: 31374662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimodal fusion of EMG and vision for human grasp intent inference in prosthetic hand control.
    Zandigohar M; Han M; Sharif M; Günay SY; Furmanek MP; Yarossi M; Bonato P; Onal C; Padır T; Erdoğmuş D; Schirner G
    Front Robot AI; 2024; 11():1312554. PubMed ID: 38476118
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of object and human-factor characteristics on the preference of thumb-index finger grasp type.
    Chen X; Li Z; Wang Y
    Ergonomics; 2020 Nov; 63(11):1414-1424. PubMed ID: 32544008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.