These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37366846)

  • 21. Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion.
    Chang E; Matloff LY; Stowers AK; Lentink D
    Sci Robot; 2020 Jan; 5(38):. PubMed ID: 33022590
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantifying the dynamic wing morphing of hovering hummingbird.
    Maeda M; Nakata T; Kitamura I; Tanaka H; Liu H
    R Soc Open Sci; 2017 Sep; 4(9):170307. PubMed ID: 28989736
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bio-inspired flapping wing robots with foldable or deformable wings: a review.
    Zhang J; Zhao N; Qu F
    Bioinspir Biomim; 2022 Nov; 18(1):. PubMed ID: 36317380
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aerodynamic effects of flexibility in flapping wings.
    Zhao L; Huang Q; Deng X; Sane SP
    J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bats actively modulate membrane compliance to control camber and reduce drag.
    Cheney JA; Rehm JC; Swartz SM; Breuer KS
    J Exp Biol; 2022 Jul; 225(14):. PubMed ID: 35762250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An aeroelastic instability provides a possible basis for the transition from gliding to flapping flight.
    Curet OM; Swartz SM; Breuer KS
    J R Soc Interface; 2013 Mar; 10(80):20120940. PubMed ID: 23303221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
    Nakata T; Liu H
    Proc Biol Sci; 2012 Feb; 279(1729):722-31. PubMed ID: 21831896
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of the Measurement Performance of the Multimodal Fibre Optic Shape Sensing Configuration for a Morphing Wing Section.
    Nazeer N; Groves RM; Benedictus R
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bat flight: aerodynamics, kinematics and flight morphology.
    Hedenström A; Johansson LC
    J Exp Biol; 2015 Mar; 218(Pt 5):653-63. PubMed ID: 25740899
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gull dynamic pitch stability is controlled by wing morphing.
    Harvey C; Inman DJ
    Proc Natl Acad Sci U S A; 2022 Sep; 119(37):e2204847119. PubMed ID: 36067296
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How swifts control their glide performance with morphing wings.
    Lentink D; Müller UK; Stamhuis EJ; de Kat R; van Gestel W; Veldhuis LL; Henningsson P; Hedenström A; Videler JJ; van Leeuwen JL
    Nature; 2007 Apr; 446(7139):1082-5. PubMed ID: 17460673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D Zero Poisson's Ratio Honeycomb Structure for Morphing Wing Applications.
    Gong X; Ren C; Sun J; Zhang P; Du L; Xie F
    Biomimetics (Basel); 2022 Nov; 7(4):. PubMed ID: 36412726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flight dynamics of a pterosaur-inspired aircraft utilizing a variable-placement vertical tail.
    Roberts B; Lind R; Chatterjee S
    Bioinspir Biomim; 2011 Jun; 6(2):026010. PubMed ID: 21558603
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical study on two-dimensional aerodynamic characteristics of unsteady wings.
    Azuma A; Okamoto M
    J Theor Biol; 2005 May; 234(1):67-78. PubMed ID: 15721036
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical analyses of a reference wing for combination of hybrid laminar flow control and variable camber.
    Jentys MM; Effing T; Breitsamter C; Stumpf E
    CEAS Aeronaut J; 2022; 13(4):989-1002. PubMed ID: 35874442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings.
    Wu P; Stanford BK; Sällström E; Ukeiley L; Ifju PG
    Bioinspir Biomim; 2011 Mar; 6(1):016009. PubMed ID: 21339627
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiaxial Deformations of Elastomeric Skins for Morphing Wing Applications: Theoretical Modeling and Experimental Investigations.
    Ahmad D; Kumar D; Ajaj RM
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433018
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators.
    Colorado J; Barrientos A; Rossi C; Bahlman JW; Breuer KS
    Bioinspir Biomim; 2012 Sep; 7(3):036006. PubMed ID: 22535882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.