These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Surface Fouling of Ultrananocrystalline Diamond Microelectrodes during Dopamine Detection: Improving Lifetime via Electrochemical Cycling. Chang AY; Dutta G; Siddiqui S; Arumugam PU ACS Chem Neurosci; 2019 Jan; 10(1):313-322. PubMed ID: 30285418 [TBL] [Abstract][Full Text] [Related]
24. Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry. Bledsoe JM; Kimble CJ; Covey DP; Blaha CD; Agnesi F; Mohseni P; Whitlock S; Johnson DM; Horne A; Bennet KE; Lee KH; Garris PA J Neurosurg; 2009 Oct; 111(4):712-23. PubMed ID: 19425890 [TBL] [Abstract][Full Text] [Related]
25. Carbon Electrode Sensor for the Measurement of Cortisol with Fast-Scan Cyclic Voltammetry. Hadad M; Hadad N; Zestos AG Biosensors (Basel); 2023 Jun; 13(6):. PubMed ID: 37366991 [TBL] [Abstract][Full Text] [Related]
26. Purine Functional Group Type and Placement Modulate the Interaction with Carbon-Fiber Microelectrodes. Lim GN; Ross AE ACS Sens; 2019 Feb; 4(2):479-487. PubMed ID: 30657307 [TBL] [Abstract][Full Text] [Related]
27. Plasma-treated carbon-fiber microelectrodes for improved purine detection with fast-scan cyclic voltammetry. Li Y; Ross AE Analyst; 2020 Feb; 145(3):805-815. PubMed ID: 31820742 [TBL] [Abstract][Full Text] [Related]
29. In Vivo Ambient Serotonin Measurements at Carbon-Fiber Microelectrodes. Abdalla A; Atcherley CW; Pathirathna P; Samaranayake S; Qiang B; Peña E; Morgan SL; Heien ML; Hashemi P Anal Chem; 2017 Sep; 89(18):9703-9711. PubMed ID: 28795565 [TBL] [Abstract][Full Text] [Related]
30. Electrochemical oxidation of histamine and serotonin at highly boron-doped diamond electrodes. Sarada BV; Rao TN; Tryk DA; Fujishima A Anal Chem; 2000 Apr; 72(7):1632-8. PubMed ID: 10763262 [TBL] [Abstract][Full Text] [Related]
31. A Diamond-Based Electrode for Detection of Neurochemicals in the Human Brain. Bennet KE; Tomshine JR; Min HK; Manciu FS; Marsh MP; Paek SB; Settell ML; Nicolai EN; Blaha CD; Kouzani AZ; Chang SY; Lee KH Front Hum Neurosci; 2016; 10():102. PubMed ID: 27014033 [TBL] [Abstract][Full Text] [Related]
32. Biofouling resistance of boron-doped diamond neural stimulation electrodes is superior to titanium nitride electrodes in vivo. Meijs S; Alcaide M; Sørensen C; McDonald M; Sørensen S; Rechendorff K; Gerhardt A; Nesladek M; Rijkhoff NJ; Pennisi CP J Neural Eng; 2016 Oct; 13(5):056011. PubMed ID: 27548023 [TBL] [Abstract][Full Text] [Related]
33. Investigation of film formation properties during electrochemical oxidation of serotonin (5-HT) at polycrystalline boron doped diamond. Patel AN; Unwin PR; Macpherson JV Phys Chem Chem Phys; 2013 Nov; 15(41):18085-92. PubMed ID: 24060971 [TBL] [Abstract][Full Text] [Related]
34. In Vivo Monitoring of Oxygen in Rat Brain by Carbon Fiber Microelectrode Modified with Antifouling Nanoporous Membrane. Zhou L; Hou H; Wei H; Yao L; Sun L; Yu P; Su B; Mao L Anal Chem; 2019 Mar; 91(5):3645-3651. PubMed ID: 30688067 [TBL] [Abstract][Full Text] [Related]
35. Improved Serotonin Measurement with Fast-Scan Cyclic Voltammetry: Mitigating Fouling by SSRIs. Stucky C; Johnson MA J Electrochem Soc; 2022 Apr; 169(4):. PubMed ID: 36157165 [TBL] [Abstract][Full Text] [Related]
36. Boron-doped diamond nano/microelectrodes for biosensing and in vitro measurements. Dong H; Wang S; Galligan JJ; Swain GM Front Biosci (Schol Ed); 2011 Jan; 3(2):518-40. PubMed ID: 21196394 [TBL] [Abstract][Full Text] [Related]
37. Plasma-treated gold microelectrodes for subsecond detection of Zn(II) with fast-scan cyclic voltammetry. Perry AN; Jarosova R; Witt CE; Weese-Myers ME; Subedi V; Ross AE Analyst; 2024 Sep; 149(18):4643-4652. PubMed ID: 39136087 [TBL] [Abstract][Full Text] [Related]