These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 37366969)

  • 21. Mechanically Ultra-Robust, Elastic, Conductive, and Multifunctional Hybrid Hydrogel for a Triboelectric Nanogenerator and Flexible/Wearable Sensor.
    Long Y; Wang Z; Xu F; Jiang B; Xiao J; Yang J; Wang ZL; Hu W
    Small; 2022 Nov; 18(47):e2203956. PubMed ID: 36228096
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradable Polymers in Triboelectric Nanogenerators.
    Mi Y; Lu Y; Shi Y; Zhao Z; Wang X; Meng J; Cao X; Wang N
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent Progress of Triboelectric Nanogenerators for Biomedical Sensors: From Design to Application.
    Rahimi Sardo F; Rayegani A; Matin Nazar A; Balaghiinaloo M; Saberian M; Mohsan SAH; Alsharif MH; Cho HS
    Biosensors (Basel); 2022 Aug; 12(9):. PubMed ID: 36140082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators.
    Zhao T; Fu Y; Sun C; Zhao X; Jiao C; Du A; Wang Q; Mao Y; Liu B
    Biosens Bioelectron; 2022 Jun; 205():114115. PubMed ID: 35219020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-strengthening and conductive cellulose composite hydrogel for high sensitivity strain sensor and flexible triboelectric nanogenerator.
    Sun W; Liu X; Hua W; Wang S; Wang S; Yu J; Wang J; Yong Q; Chu F; Lu C
    Int J Biol Macromol; 2023 Sep; 248():125900. PubMed ID: 37481191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Progress of PVDF as a Functional Material for Triboelectric Nanogenerators and Self-Powered Sensors.
    Lee JP; Lee JW; Baik JM
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly Sensitive Self-Powered Biomedical Applications Using Triboelectric Nanogenerator.
    Kamilya T; Park J
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557367
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and Applications of Hydrogel-Based Triboelectric Nanogenerators: A Mini-Review.
    Wang SJ; Jing X; Mi HY; Chen Z; Zou J; Liu ZH; Feng PY; Liu Y; Zhang Z; Shang Y
    Polymers (Basel); 2022 Apr; 14(7):. PubMed ID: 35406325
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A wearable flexible triboelectric nanogenerator for bio-mechanical energy harvesting and badminton monitoring.
    Wu M; Li Z
    Heliyon; 2024 May; 10(10):e30845. PubMed ID: 38765035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-Sterilized Flexible Single-Electrode Triboelectric Nanogenerator for Energy Harvesting and Dynamic Force Sensing.
    Guo H; Li T; Cao X; Xiong J; Jie Y; Willander M; Cao X; Wang N; Wang ZL
    ACS Nano; 2017 Jan; 11(1):856-864. PubMed ID: 28056170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrathin Stretchable Triboelectric Nanogenerators Improved by Postcharging Electrode Material.
    Zhang W; Liu Q; Chao S; Liu R; Cui X; Sun Y; Ouyang H; Li Z
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42966-42976. PubMed ID: 34473476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stretchable Woven Fabric-Based Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing.
    Chen L; Wang T; Shen Y; Wang F; Chen C
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conductive Composite Fiber with Customizable Functionalities for Energy Harvesting and Electronic Textiles.
    Yang Y; Xu B; Gao Y; Li M
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):49927-49935. PubMed ID: 34662107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Triboelectric nanogenerators as wearable power sources and self-powered sensors.
    Pu X; Zhang C; Wang ZL
    Natl Sci Rev; 2023 Jan; 10(1):nwac170. PubMed ID: 36684511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Integration of Triboelectric Nanogenerators and Supercapacitors: The Key Role of Cellular Materials.
    Meng J; Zhao Z; Cao X; Wang N
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrode materials for stretchable triboelectric nanogenerator in wearable electronics.
    Aazem I; Mathew DT; Radhakrishnan S; Vijoy KV; John H; Mulvihill DM; Pillai SC
    RSC Adv; 2022 Mar; 12(17):10545-10572. PubMed ID: 35425002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stretchable and Wearable Triboelectric Nanogenerator Based on Kinesio Tape for Self-Powered Human Motion Sensing.
    Wang S; He M; Weng B; Gan L; Zhao Y; Li N; Xie Y
    Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30149583
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polypyrrole@CNT@PU Conductive Sponge-Based Triboelectric Nanogenerators for Human Motion Monitoring and Self-Powered Ammonia Sensing.
    Ma HZ; Zhao JN; Tang R; Shao Y; Ke K; Zhang K; Yin B; Yang MB
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):54986-54995. PubMed ID: 37967332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Flexible Triboelectric Nanogenerator Using Porous Carbon Nanotube Composites.
    Shin J; Ji S; Cho H; Park J
    Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application, challenge and perspective of triboelectric nanogenerator as micro-nano energy and self-powered biosystem.
    Shen J; Li B; Yang Y; Yang Z; Liu X; Lim KC; Chen J; Ji L; Lin ZH; Cheng J
    Biosens Bioelectron; 2022 Nov; 216():114595. PubMed ID: 35973278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.