These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37367041)

  • 1. Characterization of a
    Hu J; Su Z; Dong B; Wang D; Liu X; Meng H; Guo Q; Zhou H
    Curr Issues Mol Biol; 2023 May; 45(6):4600-4611. PubMed ID: 37367041
    [No Abstract]   [Full Text] [Related]  

  • 2. Genomic and metabolic features of Bacillus cereus, inhibiting the growth of Sclerotinia sclerotiorum by synthesizing secondary metabolites.
    Hu J; Dong B; Wang D; Meng H; Li X; Zhou H
    Arch Microbiol; 2022 Dec; 205(1):8. PubMed ID: 36454319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifungal Effects of Volatiles Produced by
    Zhang D; Yu S; Yang Y; Zhang J; Zhao D; Pan Y; Fan S; Yang Z; Zhu J
    Front Microbiol; 2020; 11():1196. PubMed ID: 32625175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of volatile organic compounds from Streptomyces albulus NJZJSA2 on growth of two fungal pathogens.
    Wu Y; Yuan J; E Y; Raza W; Shen Q; Huang Q
    J Basic Microbiol; 2015 Sep; 55(9):1104-17. PubMed ID: 26059065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring plant growth promoting traits and biocontrol potential of new isolated
    Ayaz M; Ali Q; Zhao W; Chi YK; Ali F; Rashid KA; Cao S; He YQ; Bukero AA; Huang WK; Qi RD
    Front Plant Sci; 2024; 15():1444328. PubMed ID: 39239197
    [No Abstract]   [Full Text] [Related]  

  • 6. Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum.
    Giorgio A; De Stradis A; Lo Cantore P; Iacobellis NS
    Front Microbiol; 2015; 6():1056. PubMed ID: 26500617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatile Compounds of Endophytic Bacillus spp. have Biocontrol Activity Against Sclerotinia sclerotiorum.
    Massawe VC; Hanif A; Farzand A; Mburu DK; Ochola SO; Wu L; Tahir HAS; Gu Q; Wu H; Gao X
    Phytopathology; 2018 Dec; 108(12):1373-1385. PubMed ID: 29927356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colony Age of Trichoderma azevedoi Alters the Profile of Volatile Organic Compounds and Ability to Suppress Sclerotinia sclerotiorum in Bean Plants.
    Silva LRD; Rodrigues LLB; Botelho AS; Castro BS; Muniz PHPC; Moraes MCB; Mello SCM
    Plant Pathol J; 2023 Feb; 39(1):39-51. PubMed ID: 36760048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease.
    Alvarez F; Castro M; Príncipe A; Borioli G; Fischer S; Mori G; Jofré E
    J Appl Microbiol; 2012 Jan; 112(1):159-74. PubMed ID: 22017648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sclerotinia Rot of Broomrape (Orobanche cumana) Caused by Sclerotinia sclerotiorum in China.
    Ding LL; Zhao SF; Zhang XK; Yao ZQ; Zhang J
    Plant Dis; 2012 Jun; 96(6):916. PubMed ID: 30727376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocontrol Potentials of Antimicrobial Peptide Producing
    Vinodkumar S; Nakkeeran S; Renukadevi P; Malathi VG
    Front Microbiol; 2017; 8():446. PubMed ID: 28392780
    [No Abstract]   [Full Text] [Related]  

  • 12. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean.
    Zhang F; Ge H; Zhang F; Guo N; Wang Y; Chen L; Ji X; Li C
    Plant Physiol Biochem; 2016 Mar; 100():64-74. PubMed ID: 26774866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocontrol traits and antagonistic potential of Bacillus amyloliquefaciens strain NJZJSB3 against Sclerotinia sclerotiorum, a causal agent of canola stem rot.
    Wu Y; Yuan J; Raza W; Shen Q; Huang Q
    J Microbiol Biotechnol; 2014 Oct; 24(10):1327-36. PubMed ID: 24861342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Strain of
    Ma W; Ding J; Jia Q; Li Q; Jiao S; Guo X; Fan C; Chen Y; Hu Z
    Microorganisms; 2024 Mar; 12(3):. PubMed ID: 38543662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Extracellular Lipopeptides and Volatile Organic Compounds of
    Al-Mutar DMK; Noman M; Alzawar NSA; Qasim HH; Li D; Song F
    J Fungi (Basel); 2023 Jul; 9(8):. PubMed ID: 37623568
    [No Abstract]   [Full Text] [Related]  

  • 16. Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens.
    Wu Y; Zhou J; Li C; Ma Y
    Microbiologyopen; 2019 Aug; 8(8):e00813. PubMed ID: 30907064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antipathogenic Activities of Volatile Organic Compounds Produced by
    Tang T; Wang F; Huang H; Xie N; Guo J; Guo X; Duan Y; Wang X; Wang Q; You J
    J Agric Food Chem; 2024 May; 72(18):10282-10294. PubMed ID: 38657235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppressive Effects of Volatile Compounds from
    Surovy MZ; Rahman S; Rostás M; Islam T; von Tiedemann A
    Microorganisms; 2023 May; 11(5):. PubMed ID: 37317265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mutant of the nematophagous fungus Paecilomyces lilacinus (Thom) is a novel biocontrol agent for Sclerotinia sclerotiorum.
    Yang F; Abdelnabby H; Xiao Y
    Microb Pathog; 2015 Dec; 89():169-76. PubMed ID: 26521137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volatile organic compounds of the soil bacterium Bacillus halotolerans suppress pathogens and elicit defense-responsive genes in plants.
    Rana A; Sudakov K; Carmeli S; Miyara SB; Bucki P; Minz D
    Microbiol Res; 2024 Apr; 281():127611. PubMed ID: 38228018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.