These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 37367041)
21. Selenium reduces the pathogenicity of Sclerotinia sclerotiorum by inhibiting sclerotial formation and germination. Cheng Q; Hu C; Jia W; Cai M; Zhao Y; Tang Y; Yang D; Zhou Y; Sun X; Zhao X Ecotoxicol Environ Saf; 2019 Nov; 183():109503. PubMed ID: 31394376 [TBL] [Abstract][Full Text] [Related]
22. Mycelial Inhibition of Rafael da Silva L; Pereira Costa Muniz PH; Henrique Silva Peixoto G; Gonçalves Dias Luccas BE; Tavares da Silva JB; Marques de Mello SC Pak J Biol Sci; 2021 Jan; 24(4):527-536. PubMed ID: 34486312 [TBL] [Abstract][Full Text] [Related]
23. Antifungal, Plant Growth-Promoting, and Genomic Properties of an Endophytic Actinobacterium Liu D; Yan R; Fu Y; Wang X; Zhang J; Xiang W Front Microbiol; 2019; 10():2077. PubMed ID: 31551997 [TBL] [Abstract][Full Text] [Related]
24. Identification and genomic characterization of Albert D; Zboralski A; Ciotola M; Cadieux M; Biessy A; Blom J; Beaulieu C; Filion M Front Microbiol; 2024; 15():1304682. PubMed ID: 38516010 [TBL] [Abstract][Full Text] [Related]
25. First Report of Stem and Crown Rot of Garbanzo Caused by Sclerotinia minor in the United States and by Sclerotinia sclerotiorum in Arizona. Matheron ME; Porchas M Plant Dis; 2000 Nov; 84(11):1250. PubMed ID: 30832177 [TBL] [Abstract][Full Text] [Related]
26. The inhibitory effect of volatile organic compounds produced by Bacillus subtilis CL2 on pathogenic fungi of wolfberry. Ling L; Zhao Y; Tu Y; Yang C; Ma W; Feng S; Lu L; Zhang J J Basic Microbiol; 2021 Feb; 61(2):110-121. PubMed ID: 33368461 [TBL] [Abstract][Full Text] [Related]
27. Sclerotinia Wilt of Hop (Humulus lupulus) Caused by Sclerotinia sclerotiorum in the Pacific Northwest United States. Kropf SM; Putnam ML; Serdani M; Twomey MC; Woods JL; Gent DH Plant Dis; 2012 Apr; 96(4):583. PubMed ID: 30727434 [TBL] [Abstract][Full Text] [Related]
28. Identification of Volatile Organic Compounds in Extremophilic Bacteria and Their Effective Use in Biocontrol of Postharvest Fungal Phytopathogens. Toral L; Rodríguez M; Martínez-Checa F; Montaño A; Cortés-Delgado A; Smolinska A; Llamas I; Sampedro I Front Microbiol; 2021; 12():773092. PubMed ID: 34867910 [TBL] [Abstract][Full Text] [Related]
29. Two strains of airborne Nocardiopsis alba producing different volatile organic compounds (VOCs) as biofungicide for Ganoderma boninense. Widada J; Damayanti E; Alhakim MR; Yuwono T; Mustofa M FEMS Microbiol Lett; 2021 Nov; 368(20):. PubMed ID: 34758070 [TBL] [Abstract][Full Text] [Related]
30. Multiple Species of Asteraceae Plants Are Susceptible to Root Infection by the Necrotrophic Fungal Pathogen Underwood W; Gilley M; Misar CG; Gulya TJ; Seiler GJ; Markell SG Plant Dis; 2022 May; 106(5):1366-1373. PubMed ID: 34874175 [TBL] [Abstract][Full Text] [Related]
31. First Report of Sclerotinia sclerotiorum Infecting Peanut in Texas. Woodward JE; Nui C; Wright RJ; Batla MA; Baughman TA Plant Dis; 2008 Oct; 92(10):1468. PubMed ID: 30769556 [TBL] [Abstract][Full Text] [Related]
32. Basidiomycetes Are Particularly Sensitive to Bacterial Volatile Compounds: Mechanistic Insight Into the Case Study of Prigigallo MI; De Stradis A; Anand A; Mannerucci F; L'Haridon F; Weisskopf L; Bubici G Front Microbiol; 2021; 12():684664. PubMed ID: 34220771 [TBL] [Abstract][Full Text] [Related]
33. Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato. Rajer FU; Wu H; Xie Y; Xie S; Raza W; Tahir HAS; Gao X Microbiology (Reading); 2017 Apr; 163(4):523-530. PubMed ID: 28418289 [TBL] [Abstract][Full Text] [Related]
34. Diversity of food-borne Bacillus volatile compounds and influence on fungal growth. Chaves-López C; Serio A; Gianotti A; Sacchetti G; Ndagijimana M; Ciccarone C; Stellarini A; Corsetti A; Paparella A J Appl Microbiol; 2015 Aug; 119(2):487-99. PubMed ID: 25989039 [TBL] [Abstract][Full Text] [Related]
35. Research on Volatile Organic Compounds From Gao H; Li P; Xu X; Zeng Q; Guan W Front Microbiol; 2018; 9():456. PubMed ID: 29593695 [TBL] [Abstract][Full Text] [Related]
36. First Report of Sclerotinia Stem Rot Caused by Sclerotinia sclerotiorum on Brassica carinata in Florida. Young HM; Srivastava P; Paret ML; Dankers H; Wright DL; Marois JJ; Dufault NS Plant Dis; 2012 Oct; 96(10):1581. PubMed ID: 30727338 [TBL] [Abstract][Full Text] [Related]
37. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum. Cao JY; Xu YP; Cai XZ J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552 [TBL] [Abstract][Full Text] [Related]
38. Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains. Sabaté DC; Brandan CP; Petroselli G; Erra-Balsells R; Audisio MC Microbiol Res; 2018 Jun; 211():21-30. PubMed ID: 29705203 [TBL] [Abstract][Full Text] [Related]
39. First Report of Sclerotinia Stem Rot of Anemone Caused by Sclerotinia sclerotiorum in Korea. Han KS; Kim JY; Park JH; Shin HD Plant Dis; 2013 Jul; 97(7):997. PubMed ID: 30722543 [TBL] [Abstract][Full Text] [Related]
40. Genomic and biological control of Cheng Y; Lou H; He H; He X; Wang Z; Gao X; Liu J Front Microbiol; 2024; 15():1385067. PubMed ID: 38596383 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]