BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 37367310)

  • 1. The Landscape of the DNA Transposons in the Genome of the Horezu_LaPeri Strain of
    Bologa AM; Stoica I; Constantin ND; Ecovoiu AA
    Insects; 2023 May; 14(6):. PubMed ID: 37367310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome ARTIST_v2-An Autonomous Bioinformatics Tool for Annotation of Natural Transposons in Sequenced Genomes.
    Ecovoiu AA; Bologa AM; Chifiriuc DIM; Ciuca AM; Constantin ND; Ghionoiu IC; Ghita IC; Ratiu AC
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ONT-Based Alternative Assemblies Impact on the Annotations of Unique versus Repetitive Features in the Genome of a Romanian Strain of
    Bologa AM; Stoica I; Ratiu AC; Constantin ND; Ecovoiu AA
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome ARTIST: a robust, high-accuracy aligner tool for mapping transposon insertions and self-insertions.
    Ecovoiu AA; Ghionoiu IC; Ciuca AM; Ratiu AC
    Mob DNA; 2016; 7():3. PubMed ID: 26855675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Species-specific chromatin landscape determines how transposable elements shape genome evolution.
    Huang Y; Shukla H; Lee YCG
    Elife; 2022 Aug; 11():. PubMed ID: 35997258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic and chromosomal features drive transposon insertion in Drosophila melanogaster.
    Cao J; Yu T; Xu B; Hu Z; Zhang XO; Theurkauf WE; Weng Z
    Nucleic Acids Res; 2023 Mar; 51(5):2066-2086. PubMed ID: 36762470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique transposon landscapes are pervasive across Drosophila melanogaster genomes.
    Rahman R; Chirn GW; Kanodia A; Sytnikova YA; Brembs B; Bergman CM; Lau NC
    Nucleic Acids Res; 2015 Dec; 43(22):10655-72. PubMed ID: 26578579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The
    Baumgartner L; Handler D; Platzer SW; Yu C; Duchek P; Brennecke J
    Elife; 2022 Oct; 11():. PubMed ID: 36193674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster.
    Venken KJ; Bellen HJ
    Methods; 2014 Jun; 68(1):15-28. PubMed ID: 24583113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A benchmark and an algorithm for detecting germline transposon insertions and measuring de novo transposon insertion frequencies.
    Yu T; Huang X; Dou S; Tang X; Luo S; Theurkauf WE; Lu J; Weng Z
    Nucleic Acids Res; 2021 May; 49(8):e44. PubMed ID: 33511407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LoRTE: Detecting transposon-induced genomic variants using low coverage PacBio long read sequences.
    Disdero E; Filée J
    Mob DNA; 2017; 8():5. PubMed ID: 28405230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanopore sequencing and Hi-C scaffolding provide insight into the evolutionary dynamics of transposable elements and piRNA production in wild strains of Drosophila melanogaster.
    Ellison CE; Cao W
    Nucleic Acids Res; 2020 Jan; 48(1):290-303. PubMed ID: 31754714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Validation of Transposable Element Insertions Using the Polymerase Chain Reaction (PCR).
    Merenciano M; Coronado-Zamora M; González J
    Methods Mol Biol; 2023; 2607():95-114. PubMed ID: 36449160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line.
    Bessereau JL; Wright A; Williams DC; Schuske K; Davis MW; Jorgensen EM
    Nature; 2001 Sep; 413(6851):70-4. PubMed ID: 11544527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient recovery of centric heterochromatin P-element insertions in Drosophila melanogaster.
    Yan CM; Dobie KW; Le HD; Konev AY; Karpen GH
    Genetics; 2002 May; 161(1):217-29. PubMed ID: 12019236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes.
    Bellen HJ; Levis RW; Liao G; He Y; Carlson JW; Tsang G; Evans-Holm M; Hiesinger PR; Schulze KL; Rubin GM; Hoskins RA; Spradling AC
    Genetics; 2004 Jun; 167(2):761-81. PubMed ID: 15238527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of ultra-conserved elements in drosophilids and vertebrates.
    Makunin IV; Shloma VV; Stephen SJ; Pheasant M; Belyakin SN
    PLoS One; 2013; 8(12):e82362. PubMed ID: 24349264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Drosophila gene disruption project: progress using transposons with distinctive site specificities.
    Bellen HJ; Levis RW; He Y; Carlson JW; Evans-Holm M; Bae E; Kim J; Metaxakis A; Savakis C; Schulze KL; Hoskins RA; Spradling AC
    Genetics; 2011 Jul; 188(3):731-43. PubMed ID: 21515576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetics of P-element transposition into Drosophila melanogaster centric heterochromatin.
    Konev AY; Yan CM; Acevedo D; Kennedy C; Ward E; Lim A; Tickoo S; Karpen GH
    Genetics; 2003 Dec; 165(4):2039-53. PubMed ID: 14704184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Jump around: transposons in and out of the laboratory.
    Kumar A
    F1000Res; 2020; 9():. PubMed ID: 32148769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.